TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>PLAIN LANGUAGE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>METHODS</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>8</td>
</tr>
<tr>
<td>AUTHORS’ CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>CHARACTERISTICS OF STUDIES</td>
<td>15</td>
</tr>
<tr>
<td>DATA AND ANALYSES</td>
<td>41</td>
</tr>
<tr>
<td>Analysis 1.1. Comparison 1 Intervention v Control, by intensity of counselling intervention, Outcome 1 Quit at longest follow-up (6+ months).</td>
<td>42</td>
</tr>
<tr>
<td>Analysis 2.1. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 1 All hospital patients, unselected by diagnosis.</td>
<td>44</td>
</tr>
<tr>
<td>Analysis 2.2. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 2 Patients with cardiovascular disease.</td>
<td>45</td>
</tr>
<tr>
<td>Analysis 2.3. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 3 Patients with respiratory disease.</td>
<td>47</td>
</tr>
<tr>
<td>Analysis 3.1. Comparison 3 Intervention v Control, trials of pharmacotherapy (pharmacotherapy systematically varied by group), Outcome 1 Quit at longest follow-up (6+ months).</td>
<td>47</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>48</td>
</tr>
<tr>
<td>WHAT’S NEW</td>
<td>50</td>
</tr>
<tr>
<td>HISTORY</td>
<td>51</td>
</tr>
<tr>
<td>CONTRIBUTIONS OF AUTHORS</td>
<td>51</td>
</tr>
<tr>
<td>DECLARATIONS OF INTEREST</td>
<td>51</td>
</tr>
<tr>
<td>SOURCES OF SUPPORT</td>
<td>51</td>
</tr>
<tr>
<td>INDEX TERMS</td>
<td>52</td>
</tr>
</tbody>
</table>
Interventions for smoking cessation in hospitalised patients

Nancy Rigotti¹, Marcus R Munafò², Lindsay F Stead³

¹General Internal Medicine Unit, Massachusetts General Hospital, Boston, MA, USA. ²Department of Experimental Psychology, University of Bristol, BRISTOL, UK. ³Department of Primary Health Care, University of Oxford, Oxford, UK

Contact address: Nancy Rigotti, General Internal Medicine Unit, Massachusetts General Hospital, S50-9, Boston, MA, 02114, USA. nrigotti@partners.org.

Editorial group: Cochrane Tobacco Addiction Group.

Publication status and date: Edited (no change to conclusions), published in Issue 4, 2008.

Review content assessed as up-to-date: 19 May 2007.

Citation: Rigotti N, Munafò’ MR, Stead LF. Interventions for smoking cessation in hospitalised patients. Cochrane Database of Systematic Reviews 2007, Issue 3. Art. No.: CD001837. DOI: 10.1002/14651858.CD001837.pub2.

ABSTRACT

Background
An admission to hospital provides an opportunity to help people stop smoking. Individuals may be more open to help at a time of perceived vulnerability, and may find it easier to quit in an environment where smoking is restricted or prohibited. Initiating smoking cessation services during hospitalisation may help more people to make and sustain a quit attempt.

Objectives
To determine the effectiveness of interventions for smoking cessation that are initiated for hospitalised patients.

Search strategy
We searched the Cochrane Tobacco Addiction Group register which includes papers identified from CENTRAL, MEDLINE, EMBASE and PSYCINFO in January 2007, and CINAHL in August 2006 for studies of interventions for smoking cessation in hospitalised patients, using terms including (hospital and patient*) or hospitali* or inpatient* or admission* or admitted.

Selection criteria
Randomized and quasi-randomized trials of behavioural, pharmacological or multicomponent interventions to help patients stop smoking, conducted with hospitalised patients who were current smokers or recent quitters (defined as having quit more than one month before hospital admission). The intervention had to start in the hospital but could continue after hospital discharge. We excluded studies of patients admitted for psychiatric disorders or substance abuse, studies that did not report abstinence rates and studies with follow up of less than six months.

Data collection and analysis
Two authors extracted data independently for each paper, with disagreements resolved by consensus.

Main results
Thirty-three trials met the inclusion criteria. Intensive counselling interventions that began during the hospital stay and continued with supportive contacts for at least one month after discharge increased smoking cessation rates after discharge (Odds Ratio (OR) 1.65, 95% confidence interval (CI) 1.44 to 1.90; 17 trials). No statistically significant benefit was found for less intensive counselling interventions. The one study that tested a single brief (≤15 minutes) in-hospital intervention did not find it to be effective (OR 1.16, 95% CI 0.80 to 1.67). Counselling of longer duration during the hospital stay was not associated with a higher quit rate (OR 1.08,
95% CI 0.89 to 1.29, eight trials). Even counselling that began in the hospital but had less than one month of supportive contact after discharge did not show significant benefit (OR 1.09, 95% CI 0.91 to 1.31, six trials). Adding nicotine replacement therapy (NRT) did not produce a statistically significant increase in cessation over what was achieved by intensive counselling alone (OR 1.47, 95% CI 0.92 to 2.35, five studies). The one study that tested the effect of adding bupropion to intensive counselling had a similar nonsignificant effect (OR 1.56, 95% CI 0.79 to 3.06). A similar pattern of results was observed in smokers admitted to hospital because of cardiovascular disease (CVD). In this subgroup, intensive intervention with follow-up support increased the odds of smoking cessation (OR 1.81, 95% CI 1.54 to 2.15, 11 trials), but less intensive interventions did not. One trial of intensive intervention including counselling and pharmacotherapy for smokers admitted with CVD assessed clinical and health care utilization endpoints, and found significant reductions in all-cause mortality and hospital readmission rates over a two-year follow-up period.

Authors’ conclusions

High intensity behavioural interventions that begin during a hospital stay and include at least one month of supportive contact after discharge promote smoking cessation among hospitalised patients. These interventions are effective regardless of the patient’s admitting diagnosis. Interventions of lower intensity or shorter duration have not been shown to be effective in this setting. There is insufficient direct evidence to conclude that adding NRT or bupropion to intensive counselling increases cessation rates over what is achieved by counselling alone, but the evidence of benefit for NRT has strengthened in this update and the point estimates are compatible with research in other settings showing that NRT and bupropion are effective.

PLAIN LANGUAGE SUMMARY

Do smoking cessation interventions started during hospitalisation help people to stop smoking

Smoking contributes to many health problems including cancers, cardiovascular disease, and lung diseases. Smoking also increases the risk associated with hospitalisation for surgery. People who are in hospital because of a smoking-related illness are likely to be more receptive to help to give up smoking. Our review of trials found that programmes to stop smoking that begin during a hospital stay and include follow-up support for at least one month after discharge are effective. Such programmes are effective when administered to all hospitalised smokers, regardless of admitting diagnosis, and in the subset of smokers who are admitted to hospital with cardiovascular disease.

BACKGROUND

Smoking contributes to many of the health problems leading to hospitalisation, particularly vascular disease, respiratory illness and certain cancers. In addition, smoking increases the risk associated with hospitalisations for surgical procedures. Hospitalisation, especially for a tobacco-related illness, may boost receptivity to smoking cessation messages by increasing perceived vulnerability, a so-called ‘teachable moment’. Illness also brings smokers to the healthcare setting, where they have contact with health professionals who can provide a smoking cessation message or intervention. Procedures such as coronary arteriography that provides detail of the patient’s cardiac status may minimise the subsequent denial of cardiac risk by the patient (Ockene 1992). Many hospitals restrict or prohibit smoking by patients to protect patients and staff from passive smoking. This smoke-free environment may also provide an opportunity to attempt tobacco abstinence away from the usual environmental cues to smoke. For these reasons, providing (or at least initiating) tobacco dependence treatments in hospitals may be an effective preventive health strategy.

A number of studies have evaluated smoking cessation services provided or initiated in hospital. The interventions have included behavioural counselling of different forms and intensity (including post-hospitalisation contacts), pharmacological therapies (such as nicotine replacement therapy [NRT] and bupropion), and combinations of the two. The aim of this review is to evaluate the effectiveness of smoking cessation interventions directed at the hospitalised patient. In order to inform policy, we aimed to identify
the components of effective programmes. In addition, we aimed
to explore whether there is a difference in effect according to the
reason for hospitalisation or whether the effect holds for patients
with a variety of admission diagnoses.

OBJECTIVES

The primary objective was to determine the efficacy of any type
of smoking cessation programme for hospitalised patients. Our
hypotheses were that:

- Systematic behavioural intervention (brief advice,
 individual counselling, provision of self-help materials, group
 therapy) increases quit rates more than usual care, and intensive
 intervention increases quit rates more than brief intervention.

- Interventions that occur both in hospital and after
 discharge increase quit rates more than interventions limited to
 the hospital stay, and longer post-discharge follow up increases
 quit rates more than short follow up.

- Adding pharmacotherapy (such as NRT or bupropion) to a
 behavioural intervention increases quit rates more than placebo
 or no medication, and combining pharmacotherapy with a
 behavioural intervention increases quit rates more than either
 alone.

A secondary objective was to explore the possibility that the efficacy
of interventions differed for patients with different diagnoses. This
was done using subgroup analysis of trials that recruited patients
from more than one specialty, and by indirect comparison of trials
that recruited patients from within one disease category.

METHODS

Criteria for considering studies for this review

Types of studies

Randomized or quasi-randomized controlled trials.

Types of participants

Participants were patients who were hospitalised and who were
currently smoking or had recently quit (defined as quit more than
one month before hospital admission). We excluded trials of sec-
ondary prevention or cardiac rehabilitation that did not recruit
on the basis of smoking history, and trials in patients hospitalised
for psychiatric disorders or substance abuse (including inpatient
tobacco addiction programmes). We included trials that recruited
all hospitalised smokers and those limited to patients who planned
to quit smoking after hospital discharge. Trials in which 'recent
quitters' were classified as smokers were included, but a sensitivity
analysis was performed on these data to determine whether they
differed from trials that excluded such individuals.

Types of interventions

Any intervention that was initiated during the hospitalization and
that aimed to increase motivation to quit, to assist a quit attempt,
or to help recent quitters avoid relapse was included. Interven-
tions that began in hospital and continued after discharge were in-
cluded. The intervention could be delivered by physicians, nursing
staff, psychologists, smoking cessation counsellors or other hospi-
tal staff. The intervention could include advice, more intensive
behavioural therapy, or smoking cessation pharmacotherapy, with
or without continued contact after hospital discharge. The con-
trol intervention could be any less intensive intervention, such as
brief advice to quit, or it could be usual care. Studies that pro-
vided identical interventions during the hospital stay but differed
in post-discharge interventions were included. We included stud-
ies of smoking interventions that were part of a broader rehabili-
tation programme only if it was possible to extract data on the
outcome effects of the smoking cessation component specifically,
and if details of the nature of the intervention and control were ex-
plicitly stated. We included studies that reported the use of NRT,
bupropion, or other pharmacotherapy for smoking cessation.
We categorised behavioural interventions during the hospital stay
according to whether they included follow up after discharge.
Within these categories we further defined both the hospital and
follow-up interventions by level of intensity. This led to four cat-
egories of intervention intensity:

1. Single contact in hospital lasting <= 15 minutes, no follow-up
 support.
2. One or more contacts in hospital lasting in total > 15 minutes,
 no follow-up support.
3. Any hospital contact plus follow-up <=1 month.
4. Any hospital contact plus follow-up > 1 month.

Types of outcome measures

The principal outcome measure was abstinence from smoking, at
least six months after the start of the intervention. We used the
most conservative measure of quitting at the longest follow up, i.e.
we preferred a biochemically validated quit rate to self-reported abstinence, and continuous or sustained abstinence in preference to point prevalence abstinence. We used abstinence at 12-month follow up in preference to abstinence at six-month follow up. We counted participants lost to follow up as continuing smokers.

Search methods for identification of studies

We searched the Tobacco Addiction Group trials register in January 2007. This specialised register is regularly updated by electronic searches of databases including CENTRAL (2006 issue 4), MEDLINE (January 2007), EMBASE (January 2007), PsycINFO (January 2007) and handsearching of conference abstracts. Searches for the register cover smoking cessation, nicotine dependence, nicotine addiction and tobacco use. In addition, we searched CINAHL (August 2006). We searched the Centers for Disease Control Smoking and Health database for the original review but since it did not retrieve any additional studies we did not use it for the update. We asked individuals with expertise in the area of smoking cessation for details of conference abstracts and studies in press. We hand-checked bibliographies of studies generated by the search for further studies. We identified one paper which was not indexed at the time of the trials register search from current contents alerting (Mohiuddin 2007).

Search strategy for the Tobacco Addiction specialised register (hospital and patient*) or hospital* or inpatient* or admission* or admitted

Search strategy for CINAHL (OVID):
#1 (hospital with patient*) in TI OR AB
#2 (hospital* OR inpatient* OR admission* OR admitted) in TI OR AB
#3 (hospital* OR inpatient*) in DE
#4 (quit* OR smok* OR cigar* OR tobacco OR nicotine) in TI OR AB
#5 (smok* OR tobacco OR nicotine) in DE
(#1 OR #2 OR #3) AND (#4 OR #5)

Data collection and analysis

Identification of studies and data extraction

Three authors checked studies identified by the search strategies for relevance. Two authors extracted data independently. Disagreements were resolved by consensus. We noted reasons for the exclusion of studies. For each study we extracted the following data:

- author(s) and year of publication,
- methods (country of origin, recruitment, randomization and participants),
- description of intervention(s) and control, including a designation of intensity (1-4),
- outcomes (length of follow up, definition of abstinence, validation technique).

If necessary we contacted the original authors for clarification of data.

We reported the following information about each trial in the table ‘Characteristics of Included Studies’:

- Country
- Reasons for hospitalisation or specialty of admission.
- Criteria for recruitment (e.g. current smokers only or recent quitters) and whether selected according to willingness to make a quit attempt.
- Method of randomization and adequacy of concealment.
- Smoking behaviour and characteristics of participants.
- Therapist types.
- Description of experimental and control interventions and classification by length of in hospital contact and post-discharge support.
- Outcome measures (definition of abstinence used in review, use of biochemical validation), number of deaths.

Evaluation of quality

We evaluated studies on the basis of the quality of the randomization and allocation concealment procedure used, as this is the main source of bias which has been empirically associated with overestimation of treatment effects (Schulz 1995). We also assessed whether the studies reported validation of self-reported smoking cessation, and how they handled patients lost to follow up, since these are possible sources of bias in smoking cessation studies. At the suggestion of a peer reviewer, we also assessed the extent to which study populations consisted of current smokers and recent quitters.

Analysis of the data

We used statistical methods for pooling using a Mantel-Haenszel fixed-effect method, with 95% confidence intervals. This summary statistic replaces the Peto method (Yusuf 1985) used in previous versions of this review, since the Mantel-Haenszel method is now recommended for Cochrane reviews (Cochrane Handbook). Differences in results using the two methods are small, and most likely to be apparent where numbers are unbalanced between groups, in which case the Peto method may give biased results. Where there was substantial heterogeneity between studies we explored possible reasons using subgroup analyses or considered the impact of outliers. We express results as an odds ratio (intervention odds/control odds) for achieving abstinence from smoking together with the 95% confidence interval for this estimate. To investigate statistical heterogeneity we used the I² statistic, given by the formula [(Q - df)/Q] x 100%, where Q is the chi squared statistic and df is its degrees of freedom (Higgins 2003). This describes the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance). A value greater than 50% may be considered to indicate moderate to substantial heterogeneity. We calculated quit rates based on the numbers of patients randomized to an intervention, excluding any deaths. Those who...
dropped out or were lost to follow up were counted as continuing smokers. Most studies verified self-reported smoking status with a biochemical test. In these studies, self-reported nonsmokers who did not pass the verification procedure were counted as smokers. We noted the number of deaths in the Table of Included Studies. We analysed data according to our pre-determined classification of four levels of intensity (see Types of Intervention, above). Where we included studies that were judged by quality criteria to be more prone to bias, we planned sensitivity analyses to assess whether their inclusion altered our findings. We also planned sensitivity analyses to explore, where possible, the contribution of different components to an overall effect (for example, the role of NRT in a multicomponent intervention) and to determine whether the effects were different when the study population was restricted to those wishing to stop.

In an exploratory analysis, we evaluated the effects of interventions in patients admitted to hospital because of these specific diagnoses: cardiovascular disease, respiratory disease and cancer. We also assessed the effects of interventions that were designed to be delivered to all (or nearly all) of the smokers who were admitted to hospital regardless of the smoker’s admitting diagnosis. Where there were insufficient data for meta-analysis, the results were tabulated. In cases where a single study reported data on patients from different categories, we pooled the data only when it was possible to extract data by disease category. Otherwise we included only those studies reporting data from patients in a single disease category.

We include in this updated review the Tobacco Addiction Group glossary of tobacco-specific terms (Appendix 1).

Results

Description of studies

See: Characteristics of included studies; Characteristics of excluded studies.

Thirty-three trials conducted in the United States, the United Kingdom, Australia, Canada, Denmark, Japan, Netherlands, Norway, and Spain between 1990 and 2007 met the inclusion criteria and contributed to the review. The previous version of this review included 17 trials published between 1990 and 2002; the update includes 16 new studies. All but three of these studies contributed to the main comparison of a behavioural counselling intervention, classified by intensity, versus control. Those that did not contribute (Campbell 1991; Campbell 1996; Rigotti 2006) did not include a control group of usual care or less intensive counselling; the intervention tested in those studies was pharmacotherapy as an adjunct to behavioural support. Twenty-one studies (Taylor 1990; Campbell 1991; Pederson 1991; CASIS 1992; De Busk 1994; Rigotti 1994; Campbell 1996; Miller 1997; Dornelas 2000; Ortigosa 2000; Hajek 2002; Bolman 2002; Feeney 2001; Reid 2003; Quist-Paulsen 2003; Froelicher 2004; Chouinard 2005; Pedersen 2005; Rigotti 2006; Mohiuddin 2007; Croghan 2005) provided separate data by disease and contributed to the comparison of intervention versus control in different disease categories. We excluded 51 studies which appeared relevant but did not meet all inclusion criteria (see Table of Excluded Studies). We describe each intervention in the Table of Included Studies.

Counselling interventions

Advice to quit smoking and/or behavioural counselling was provided in all 33 studies. In 32 of them, a nurse or counsellor provided stop-smoking advice and/or behavioural counselling. Eleven studies included physician advice to quit (Campbell 1991; De Busk 1994; Campbell 1996; Miller 1997; Lewis 1998; Pelletier 1998; Ortigosa 2000; Feeney 2001; Froelicher 2004; Croghan 2005; Hennekens 2005), and in one study (Pederson 1991) physician advice was offered prior to admission. In another (Rigotti 1997) the patient chart was stamped with a prompt to remind the physician to offer smoking cessation advice. Counselling ranged in duration from less than five minutes to one hour. Counselling was delivered on more than one occasion during the hospitalisation period in four studies (Pederson 1991; CASIS 1992; Rigotti 1994; Nagle 2005). Most studies also included materials such as self-help booklets, relaxation audio tapes and video tapes.

Twenty-five of 33 studies (all except Pederson 1991; Pelletier 1998; Bolman 2002; Hajek 2002; Molyneux 2003; Croghan 2005; Hennekens 2005; Nagle 2005) offered follow-up support following discharge. Of these, 19 offered support by telephone (Taylor 1990; CASIS 1992; Stevens 1993; De Busk 1994; Rigotti 1994; Miller 1997; Rigotti 1997; Simon 1997; Lewis 1998; Dornelas 2000; Ortigosa 2000; Stevens 2000; Quist-Paulsen 2003; Simon 2003; Froelicher 2004; Hasuo 2004; Chouinard 2005; Hennekens 2005; Rigotti 2006), three at an outpatient clinic (Campbell 1991; Campbell 1996; Pedersen 2005) one at group sessions (Mohiuddin 2007), one at either a hospital or community pharmacy (Vial 2002) and one offered in-person counselling for people still smoking (Reid 2003). The duration of extended support ranged from one week to six months from discharge.

Pharmacotherapy

No studies tested the efficacy of pharmacotherapy with nicotine replacement therapy (NRT) or bupropion versus placebo in the absence of a counselling intervention. However, five studies (Campbell 1991; Campbell 1996; Lewis 1998; Vial 2002; Molyneux 2003) tested the marginal value of adding NRT to a counselling intervention, one study (Rigotti 2006) tested the marginal value of adding bupropion to a counselling intervention, and one trial (Simon 2003) tested the marginal value of adding counselling to pharmacotherapy with NRT. In a number of other studies, especially the newer studies, pharmacotherapy was allowed as part of the intervention or available to participants in the trial but was not specifically offered to all participants in one group and to
none in another. Ten studies reporting provided NRT to a subgroup of patients or did not specify the extent of its use (Taylor 1990; De Busk 1994; Rigotti 1997; Simon 1997; Quist-Paulsen 2003; Reid 2003; Simon 2003; Froelicher 2004; Chouinard 2005; Pedersen 2005). Two studies included bupropion in a similar fashion (Chouinard 2005; Mohiuddin 2007).

Other study characteristics

Three studies compared two intervention conditions with a usual care control (Miller 1997; Chouinard 2005; Henrikus 2005), with the difference between the two intervention conditions being in the duration of post-discharge follow up. Results from each arm of this study were included separately in the analysis by intervention intensity. In three other studies that compared two intervention arms to a usual care control, the behavioural support offered in the two arms was comparable and results of the two intervention arms were combined for the intensity analysis by intensity subgroups (Lewis 1998; Molyneux 2003; Vial 2002). In two of these, the two intervention arms differed by the presence or absence of nicotine replacement (Lewis 1998; Molyneux 2003), and these arms were directly compared in the pooled analysis of the effect of NRT. In the third, both intervention arms included the use of NRT, and compared follow up from either a hospital or community pharmacist (Vial 2002). In one study the smoking cessation intervention was part of a multicomponent risk intervention for patients with cardiovascular disease (De Busk 1994). In this case the smoking cessation intervention was well-defined and met our inclusion criteria.

Most studies (28 of 33) assessed cigarette abstinence 12 months after hospital discharge. Only five studies reported a shorter follow-up period of six months (Lewis 1998; Pederson 1991; Rigotti 1997; Pedersen 2005; Croghan 2005). About half of the studies (16 of 33) used the preferred outcome measure, sustained abstinence. The remaining 17 studies used point prevalence abstinence as the outcome measure. One study reported sustained abstinence rates for overall cessation but point prevalence rates by diagnosis (Miller 1997).

All studies except one included both males and females; the exception (Froelicher 2004) included only females. All studies included adults who smoked cigarettes currently or recently (e.g., within the past month). Six studies included recent quitters as well as current smokers (CASIS 1992; Stevens 1993; De Busk 1994; Rigotti 1994; Stevens 2000; Nagle 2005).

Risk of bias in included studies

Fifteen of the thirty-three studies reported a procedure for random sequence generation and allocation concealment that we judged likely to avoid recruitment bias (Taylor 1990, Miller 1997, Simon 1997, Lewis 1998, Dornelas 2000; Feeney 2001; Hajek 2002; Vial 2002; Quist-Paulsen 2003; Reid 2003; Froelicher 2004; Hasuo 2004; Nagle 2005; Pedersen 2005; Rigotti 2006). Fourteen studies did not report the method of randomization and concealment in enough detail to judge the quality. Four studies did not allocate treatment at the individual patient level (Stevens 1993; Stevens 2000; Pelletier 1998; Bolman 2002). Two of them allocated treatment by alternating between hospitals over time (Stevens 1993, Stevens 2000) and one study employed a quasi-experimental design with one intervention and two control hospitals (Pelletier 1998). One other study (Bolman 2002) was not fully randomized; 7 of 11 participating hospitals were randomized to condition, but four others selected their study arm. All four of these studies share the potential problems of recruitment bias and of underestimation of confidence limits due to intracluster correlation. Therefore, we conducted sensitivity analyses on the effect of excluding them. Most studies (28 of 33) used a method to validate subjects’ self-reports of quitting at the follow-up assessment. Biochemical validation of smoking status was done in 27 studies, by expired air carbon monoxide in 13 studies (Taylor 1990, Campbell 1991, CASIS 1992, De Busk 1994, Campbell 1996, Lewis 1998, Ortigosa 2000, Hajek 2002; Croghan 2005; Mohiuddin 2007; Molyneux 2003; Reid 2003; Vial 2002), and by plasma, salivary, or urinary cotinine in 15 studies (De Busk 1994, Rigotti 1994, Miller 1997, Rigotti 1997, Simon 1997; Hajek 2002; Feeney 2001; Chouinard 2005; Froelicher 2004; Henrikus 2005; Hasuo 2004; Nagle 2005; Quist-Paulsen 2003; Rigotti 2006; Simon 2003). One study used “corroboration by significant other” as the only validation method (Dornelas 2000), and four other studies used “corroboration by significant other” in cases where a plasma or salivary cotinine measure was not available (Miller 1997, Lewis 1998; Simon 2003; Froelicher 2004). Five studies (Stevens 1993, Pelletier 1998, Stevens 2000; Bolman 2002; Pedersen 2005) did not validate self-reported quitting at the follow-up assessment, and three others (Pederson 1991, Reid 2003; Vial 2002) did not validate all self-reported quitters. Four studies used more than one means of validation other than corroboration by significant other (Taylor 1990, De Busk 1994; Chouinard 2005; Rigotti 2006).

Most studies recruited participants on the basis of a convenience sample, with randomization being to group (intervention or control) rather than to initial inclusion. Participation rates (i.e., the proportion of those approached who agreed to take part in the trial) were also seldom recorded. Most studies recorded those lost to follow-up as continuing smokers. In one study (Stevens 2000), the intervention was offered inconsistently, with only 68% of those eligible for the intervention actually being approached.

Effects of interventions

Effect of counselling interventions categorised by intensity

Only one included study (Henrikus 2005) reported on the effect of a brief intervention in hospitalised patients with no follow-up after discharge (intensity 1). That study had a large sample size (>650 subjects per study arm). The brief intervention was no more effective than usual care (OR 1.16, 95% CI 0.80 to 1.67)
Although the confidence limits did not exclude the possibility of a benefit. Eight studies (Pedersen 1991; Pelletier 1998; Hajek 2002; Bolman 2002; Molyneux 2003; Chouinard 2005; Croghan 2005; Nagle 2005) used a more intensive intervention in hospital but had no follow-up intervention component after discharge (intensity 2). There was no evidence of a significant benefit from pooling these studies and in updating the review the confidence intervals have narrowed, suggesting that any effect is likely to be small (OR 1.08, 95% CI 0.89 to 1.29, I² = 24%). Similar lack of statistically significant benefit was observed in a pooled analysis of the six studies that tested the effect of an intervention that began during hospitalisation and continued for up to 1 month after discharge (intensity 3). The odds ratio and confidence interval for the estimate of the effect of this level of intervention (OR 1.09, 95% CI 0.91 to 1.31, I² = 0%) is almost identical to that produced by the intensity 2 intervention.

We identified substantial heterogeneity (I² = 53%) in the results of 18 studies that tested the highest intensity intervention (intensity 4), consisting of counselling that began in the hospital and continued for more than 1 month after discharge. One study (Feeney 2001) was an extreme outlier reporting a very large effect (OR 49). In this trial amongst 198 patients admitted to a coronary care unit there was a very high drop out rate (79%) and low quit rate (1%) at 12 months in the usual care condition whilst the dropout rate was 55% and the quit rate 34% in the intervention group. The intervention group quit rate was comparable to that of other trials in the intensity 4 subgroup, but control group quit rates in the other trials were typically over 10%. This suggested that the difference in relative effect might have been due to characteristics of the support given the control group and we decided to exclude this trial from the meta-analysis. This reduced the heterogeneity (I² = 35%) and the pooled estimate showed a statistically significant increase in quit rates (OR 1.65, 95% CI 1.44 to 1.90).

Sensitivity analyses

Some studies of behavioural counselling also included the option of pharmacotherapy, principally NRT. A sensitivity analysis excluding thirteen studies that reported the use of NRT within the highest intervention intensity (Taylor 1990, De Busk 1994, Simon 1997, Miller 1997, Lewis 1998; Vial 2002; Quist-Paulsen 2003; Reid 2003; Simon 2003; Froelicher 2004; Chouinard 2005; Pedersen 2005; Mohiuddin 2007) did not suggest that the efficacy of these interventions was due to the use of NRT. The result, though smaller, remained statistically significant (OR 1.36, 95% CI 1.04 to 1.77, I² = 0%).

Another sensitivity analysis excluded studies that did not randomly assign subjects to condition. Within studies that did not provide follow-up (intensity 2) we performed a sensitivity analysis excluding data reported by two studies that did not fully randomize patients (Bolman 2002; Pelletier 1998). Although the point estimate dropped below 1.0, the conclusion did not change (OR 0.94, 95% CI 0.74 to 1.20, I² = 0%). Within the group of studies that delivered an intervention with minimal follow-up (intensity 3) a sensitivity analysis excluding the data reported by two studies that did not randomize patients (Stevens 1993, Stevens 2000) changed the point estimate, but did not substantially affect the confidence intervals (OR 1.01, 95% CI 0.78 to 1.31, I² = 0%).

Approximately half of studies that delivered the highest intervention intensity (intensity 4) excluded smokers who were not willing to attempt cessation after discharge. We performed a sensitivity analysis excluding the data reported by nine studies in which participants were selected on the basis of their willingness to make a quit attempt (Taylor 1990; De Busk 1994; Miller 1997; Simon 1997; Lewis 1998; Vial 2002; Reid 2003; Froelicher 2004; Hasuo 2004) An intervention effect persisted in the remaining eight studies (OR 1.70, 95% CI 1.38 to 2.09, I² = 50%).

We performed a sensitivity analysis excluding studies that reported data from quitters (defined as having not smoked for more than 1 month before admission) as well as current smokers (Taylor 1990; CASIS 1992, Stevens 1993, De Busk 1994, Rigotti 1994, Stevens 2000, Nagle 2005). For intensity 3 (studies delivering a minimal intervention intensity with short-term follow up), limiting the analysis to current smokers produced little change in the result (OR 1.01, 95% CI 0.77 to 1.32, I² = 0%). For studies delivering the highest intervention intensity (intensity 4), a statistically significant increase in quitting remained even after the exclusion of studies that included quitters, and the point estimate changed little (OR 1.57, 95% CI 1.35 to 1.82, I² = 30%).

We performed a sensitivity analysis excluding five studies that did not validate self-reported smoking cessation outcomes (Bolman 2002; Pedersen 2005; Pelletier 1998; Stevens 1993; Stevens 2000). This did not alter the results. The point estimates for the lower intensity interventions declined slightly, but confidence intervals remained wide and conclusions did not change [Intensity 2 OR 0.94, 95% CI 0.74 to 1.20, I² = 0%]; Intensity 3 OR 1.01, 95% CI 0.78 to 1.31, I² = 0%]). Only one study in the most intensive intervention category (intensity 4) did not validate self-reported smoking cessation (Pedersen 2005). Excluding it did not alter the point estimate or statistical significance of the effect (OR 1.65, 95% CI 1.44 to 1.90, I² = 39%).

Effect of pharmacotherapy

The effect of pharmacotherapy compared with placebo as a single intervention in the absence of counselling has not been tested. A few trials have tested the effect of adding pharmacotherapy to a counselling intervention or, conversely, of adding counselling to a pharmacotherapy intervention. Five trials (Campbell 1991, Campbell 1996, Lewis 1998; Molyneux 2003; Vial 2002) tested the marginal effect of NRT added to counselling. In these trials, NRT was compared with placebo NRT or no NRT and all subjects received a counselling intervention. Pooled analysis of these studies produced an OR of 1.47, but it did not reach statistical significance (95% CI 0.92 to 2.35, I² = 42%). However, this result is consistent with the effect of NRT seen in other settings.
One study (Rigotti 2006) systematically compared the use of bupropion with placebo. It did not detect a statistically significant effect of the drug over intensive counselling alone (OR 1.56, 95% CI 0.79 to 3.06). However, the confidence limits were wide and encompass the confidence limits for the effect of bupropion in other settings (OR 1.94, 95% CI 1.72 to 2.19, Hughes 2007).

Effect of intervention by diagnosis

The included studies were heterogeneous in the types of hospitalised patients who were recruited. Eleven studies enrolled hospitalised patients with a wide range of admitting diagnoses. These studies tested smoking intervention programs that were implemented hospital-wide (Hasuo 2004; Henrikzus 2005; Lewis 1998; Miller 1997; Molyneux 2003; Nagle 2005; Rigotti 1997; Simon 2003; Stevens 1993; Stevens 2000; Vial 2002). Eighteen studies (Taylor 1990, Campbell 1991, CASIS 1992, De Busk 1994, Rigotti 1994, Miller 1997, Petleter 1998, Dornelas 2000, Ortigosa 2000, Hajek 2002, Bolman 2002, Quist-Paulsen 2003, Reid 2003, Froelicher 2004, Chouinard 2005, Pedersen 2005; Mohiuddin 2007) reported on the effects of interventions in patients hospitalised with a cardiovascular diagnosis. Four studies reported on interventions in patients with a respiratory diagnosis (Campbell 1996; Miller 1997; Pedersen 1991). Only one small pilot study that recruited hospitalised patients admitted for a cancer diagnosis was found (Croghan 2005). Because of this diagnostic heterogeneity, we examined the results of interventions within these diagnostic groups, keeping the same intensity subgroups where there number of studies justified it.

The pattern of effect across intervention intensities was similar for the eleven studies that enrolled patients with all admitting diagnoses (Comparison 02.01). Interventions categorized as intensity 4 (counselling in hospital and more than one month of follow-up after discharge) were effective in a pooled analysis of six studies in this subgroup. (OR 1.43, 95% CI 1.17 to 1.75, I² = 0%, Hasuo 2004; Henrikzus 2005; Lewis 1998; Miller 1997; Simon 2003; Vial 2002). The odds ratio was lower than the effect of the intensity 4 intervention in the overall analysis, but the confidence intervals overlap and we cannot conclude that intensive interventions are less effective in this subgroup. Pooled analysis of less intensive interventions demonstrated no effect and did not differ from the overall analysis (intensity 2: OR 0.90, 95% CI 0.62 to 1.30, I² = 0%, Molyneux 2003; Nagle 2005); intensity 3, OR 1.12, 95% CI 0.93 to 1.34, I² = 27%, Miller 1997; Rigotti 1997; Stevens 1993; Stevens 2000).

The estimate of the effect for each level of intervention intensity among patients with a cardiovascular diagnosis was also very similar to that for the entire sample of hospitalised patients (Comparison 02.02). Pooled analysis of 11 studies reporting on the effect of the most intensive intervention (intensity 4) (Taylor 1990; CASIS 1992; De Busk 1994; Miller 1997; Dornelas 2000; Quist-Paulsen 2003; Reid 2003; Froelicher 2004; Chouinard 2005; Pedersen 2005; Mohiuddin 2007) found a statistically significant effect (OR 1.81, 95% CI 1.53 to 2.15, I² = 43%). The point estimate of the effect was slightly higher than that for overall analysis (OR 1.65, 95% CI 1.44 to 1.90), but the confidence intervals overlap and we cannot conclude that interventions in patients hospitalised for cardiovascular disease are more effective than in the general hospital population. No statistically significant effect was found for interventions of lower intensity. Pooled analysis of four studies of in-hospital counselling without follow-up after discharge (intensity 2) found no intervention effect (OR 1.14, 95% CI 0.92 to 1.43, I² = 55%, Bolman 2002; Hajek 2002; Chouinard 2005; Pelletier 1998). Pooled analysis of three studies that provided in-hospital counselling and brief follow-up contact after discharge (intensity 3) also found no intervention effect (OR 1.07, 95% CI 0.74 to 1.55, I² = 0%, Rigotti 1994; Miller 1997; Ortigosa 2000).

One of the trials that tested an intensity 4 smoking intervention in the cardiovascular subgroup (Mohiuddin 2007) also assessed all-cause mortality and hospital readmission rates as endpoints. Over a 2-year follow-up, the intervention produced a relative risk reduction of 0.77 (95% CI 0.27-0.93, p=.014) in all-cause mortality and a relative risk reduction of 0.44 (95% CI 0.16 to 0.63, p=.007) in hospital readmissions.

Four studies provided interventions to patients hospitalised with a respiratory diagnosis, none of which showed significant effects. Two studies evaluated NRT (Campbell 1991; Campbell 1996) and the two studies of counselling interventions used different intensity interventions (Miller 1997; Pedersen 1991) so we did not estimate a pooled effect.

One pilot study reported on the effects of a hospital-based intervention for patients with cancer (Croghan 2005). It found no evidence of efficacy but the sample size was very small and the confidence limits were very broad.

DISCUSSION

The results of this review indicate that smoking cessation counselling interventions delivered during a period of hospitalisation and including follow-up support that lasts at least one month after discharge increase smoking cessation rates. The estimated effect of such interventions was to increase the odds of smoking cessation by 65% at 6-12 months after hospital discharge. This finding was robust. It remained statistically significant in sensitivity analyses that excluded studies of lower quality (e.g., those that did not validate self-reported smoking cessation at outcome or those that were not randomized). Neither the exclusion of studies that included recent quitters as well as current smokers nor those that included...
patients selected for motivation significantly affected the relative effect of intervention over control. This review found no evidence to support the efficacy of less intensive counselling interventions, such as those delivered only during hospitalisation or those which include less than one month of follow-up support after discharge. Therefore, post-discharge follow-up support appears to be an important component of interventions that begin during hospitalisation. We caution that the effect sizes observed in all these studies may be artificially modest because in many cases the “control” condition was more intensive than usual care or simply brief advice.

The counselling intervention in these studies was generally delivered by a research nurse or trained smoking cessation counsellor, not by a nurse responsible for other aspects of the patients’ clinical care. Physician advice was a component of the intervention in many trials. There is no specific evidence from this review that brief physician advice to quit is effective by itself in the hospital setting, although evidence from trials in primary care settings support the efficacy of physician advice to quit (Silagy 2004a). Pharmacotherapy with NRT or bupropion was included in some of the counselling studies, especially the more recent ones. In most of these trials, the pharmacotherapy was not systematically provided to all subjects in the intervention arm or excluded from all subjects in the control arm. The efficacy of counselling interventions remained after excluding those studies that reported the use of NRT, suggesting that counselling alone is effective.

In hospitalised smokers the effect of pharmacotherapy by itself, compared to placebo or no pharmacotherapy, in the absence of counselling cannot be determined because no such trials have conducted. However, the marginal effect of NRT when added to counselling in the hospital setting has been tested. Pooled analysis of five studies estimated a 47% increase in the odds of quitting when NRT was added to counselling, but the result missed achieving statistical significance. There was a trend toward efficacy and the confidence intervals were compatible with an effect of NRT similar to that found in other settings. The estimate ORs from the Cochrane review of NRT are 1.66 (95% CI 1.52 to 1.81) for nicotine gum and 1.81 (95% CI 1.63 to 2.02) for nicotine patch (Silagy 2004b). Hence these data are supportive of its usefulness in appropriate patients during and following hospitalisation. The marginal effect of counselling when added to NRT began in the hospital was tested in only one study (Simon 2003). Intensive counselling increased the odds of smoking cessation over that achieved by NRT alone, but the confidence limits of that estimate missed statistical significance (OR 1.71, 95% CI 0.90, 3.23). However, the result was consistent with the pooled estimate from this review of the effect of intensive counselling without pharmacotherapy. One study compared the marginal efficacy of bupropion over intensive counselling in the hospital setting (Rigotti 2006). Bupropion was not more effective than placebo in that study, but the confidence limits were wide and the effect size was consistent with evidence from other populations that bupropion is effective for smoking cessation (Hughes 2007). These data support including pharmacotherapy with NRT or bupropion to hospital-initiated smoking interventions, when there is no clinical contra-indication.

The analyses by diagnosis demonstrate that the intensive counselling intervention is effective in the subgroup of patients admitted to hospital with a cardiovascular diagnosis, as it is for the overall group of hospitalised smokers who are not selected by diagnosis. The absolute cessation rates amongst smokers admitted with cardiovascular disease tended to be higher than amongst smokers not selected by diagnosis, but the relative effect of an intensive counselling intervention was not significantly greater in CVD patients. The potential benefit of intensive intervention in smokers with CVD was illustrated in the one study that assessed health care utilisation and mortality outcomes (Mohiuddin 2007). That study produced a large increase in smoking cessation, and at two-year follow-up, a substantial decline in hospital readmission and all-cause mortality rates. There was a possibility of confounding due to better control of blood pressure and cholesterol and better medication compliance in the intervention group. The effectiveness of smoking cessation interventions for patients who are admitted to hospital with a respiratory diagnosis is less clear, in part because of a small number of studies in this subgroup. Overall, there is no strong evidence for a differential effect of the intensive counselling intervention by diagnosis. These data support offering hospital-based interventions to all smokers, regardless of admitting diagnosis.

Determining how to translate these findings effectively and consistently into routine clinical practice is the next challenge for this field. The intervention in most of the trials included in this review was delivered by research staff. The effectiveness of implementing the intervention in routine clinical practice, where interventions will be delivered by clinical staff, needs to be demonstrated. Feasible models that can be readily implemented in hospital settings are needed. Current evidence on this point is limited. Two studies included in this review illustrate the challenge (Stevens 1993; Stevens 2000). Both studies provided a similar counselling intervention in a similar setting, but counselling was delivered by research staff (masters-level psychologists) in the first study and by clinical staff (trained respiratory therapists) in the second study. The intervention efficacy was demonstrated in the first study but did not persist in the second study. The feasibility of maintaining an efficacious intervention after the conclusion of a research trial was investigated for another study included in this systematic review (Miller 1997). The counselling intervention was maintained in the same hospitals for three years after the clinical trial ended. During that time approximately half of the smokers accepted the offer of intervention, and those smokers had a cessation rate comparable to that achieved in the randomized trial. These results suggested that programme effectiveness was maintained (Smith 2002). More studies are needed to demonstrate the feasibility and
effectiveness of hospital-initiated smoking cessation interventions in routine practice.

AUTHORS’ CONCLUSIONS

Implications for practice
The results support the use of smoking cessation counselling interventions that begin during the hospitalisation period and include at least one month of follow-up supportive contact after discharge. There is no evidence that less intensive counselling interventions, particularly those that do not continue after hospital discharge, are effective in promoting smoking cessation. The efficacy of the counselling intervention does not clearly vary by a smoker’s admitting diagnosis, and it is appropriate to offer the intervention to hospitalised smokers regardless of their admitting diagnosis. Although adding nicotine replacement therapy (NRT) or bupropion to the intensive counselling intervention did not produce a statistically significant increase in cessation rates, there was a trend toward statistical significance in the NRT group, and the results are compatible with data which show the effectiveness of NRT and bupropion in other settings. The totality of evidence clearly shows that pharmacotherapy should be part of the in-hospital intervention in addition to counselling when clinically indicated.

Implications for research
The impact of an intensive counselling intervention is well-established. Further studies testing the efficacy of adding smoking cessation pharmacotherapy to counselling might generate sufficient data to produce a statistically significant result in future pooled analyses. However, the existing studies of NRT and bupropion have produced odds ratios and confidence intervals that are consistent with the established efficacy of these pharmacotherapies. The efficacy of starting varenicline, a newer smoking cessation pharmacotherapy, in the hospital setting has not been studied.

Research is needed to identify effective strategies for implementing this evidence in routine practice in health care systems.

Additional research needs are to assess the cost-effectiveness of the intensive counselling intervention and to explore the impact of counselling on health and healthcare utilization outcomes.

ACKNOWLEDGEMENTS

Mike Murphy was an author on the original version of this review (2001, Issue 2), and on the first update (2003, Issue 1). The authors would like to thank Sarah Welch and Sarah Roberts of the ICRF General Practice Research Group for their assistance in extracting data for the original review, Nete Villebro and Hitomi Kobayashi for their assistance in translating and extracting data, and Corinne Husten, John Britton and Ian Campbell for helpful comments during peer review.

REFERENCES

References to studies included in this review

Bolman 2002 [published data only]

Campbell 1991 [published data only]

Campbell 1996 [published data only]

CASI 1992 [published data only]

Chouinard 2005 [published data only]

Croghan 2005 [unpublished data only]

De Busk 1994 [published data only]
* DeBusk RF, Houston-Miller N, Superko HR, Dennis CA,
Interventions for smoking cessation in hospitalised patients (Review)

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

[All references listed here]
Quist-Paulsen 2003 [published data only]
Reid 2003 [published data only]
Rigotti 1994 [published data only]
Rigotti 1997 [published data only]
Rigotti 2006 [published data only]
Simion 1997 [published data only]
Simion 2003 [published data only]
Stevens 1993 [published data only]
Stevens 2000 [published data only]
Taylor 1990 [published data only]
Vial 2002 [published data only]
References to studies excluded from this review
Agewall 2001 [published data only]
Allen 1998 [published data only]
Asfar 2005 [published data only]
Becker 2003 [published data only]
Bize 2006 [published data only]
Blom 2005 [published data only]
Interventions for smoking cessation in hospitalised patients (Review)

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

BTS 1983 [published data only]

Burt 1974 [published data only]

Chan 2003 [published data only]

Choo 2004 [published data only]
Choo YM, Ong KC, Lee WK. Effectiveness of a smoking cessation program among hospitalized patients in Singapore. Chest 2004;126(4):713S.

Colby 1998 [published data only]

Cole 2001 [published data only]

Dale 1995 [published data only]

Davies 2005 [published data only]

Elsony 2005 [published data only]

Emmons 2000 [published data only]

Fung 2005 [published data only]

Galvin 2001 [published data only]

Gariti 2002 [published data only]

Griz 1993 [published data only]

Hilleman 2004 [published data only]

Jeong 2002 [published data only]

Johnson 1999 [published data only]

Jones 2001 [published data only]

Joseph 2004 [published data only]

Joseph 2005 [published data only]

Kalman 2001 [published data only]
Kalman D, Hayes K, Colby SM, Eaton CA, Rohsenow DJ, Monti PM. Concurrent versus delayed smoking cessation treatment for...

References to studies awaiting assessment

Additional references

Cochrane Handbook

Higgins 2003

Hughes 2007

Ockene 1992

Schulz 1995

Silagy 2004a

Silagy 2004b

Yusuf 1985

References to other published versions of this review

Munafo 2001

Rigotti 2001

Rigotti 2003

* Indicates the major publication for the study
CHARACTERISTICS OF STUDIES

Characteristics of included studies *(ordered by study ID)*

Bolman 2002

| Methods | Country: Netherlands
Recruitment: Cardiac ward patients in 11 hospitals
Selection: All eligible patients asked to participate by ward nurses.
Randomization: By hospital, 4/11 selected condition (exclusion of these did not change results). Possibility of recruitment bias cannot be excluded although control ward nurses supposed to be blind to condition |
|---------------|---|
| Participants | Participants: 789 smokers who had smoked in previous week. 25 deaths, 38 refusals, 64 missing baseline data excluded from analysis denominator.
Number smoked: not stated.
Age: 56 yrs average.
Therapists: Physician, nurse. |
| Interventions | 1. Intervention (5 hospitals): Cardiologist advice, 15-30 min counselling from ward nurse. Follow up: Cardiologist prompted to advise at 4-6 wk clinic but no counselling provided by team. Self-help materials. No pharmacotherapy. [Intensity 2]
2. Control: Usual care
NRT: No. |
| Outcomes | Abstinence: Sustained at 12m
Validation: None.
Died: 25 at 12m |
| Notes | Randomized by hospital but not fully randomized, 4 of 11 hospitals self-selected intervention group. Included in CVD subcategory
Numbers in meta-analysis adjusted to approximate the OR reported from a logistic regression analysis on continuous abstinence (OR 1.17, 90% CI 0.85 to 1.61) |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

Campbell 1991

| Methods | Country: UK
Recruitment: Inpatients with smoking-related diseases
Selected: Invited to participate.
Randomization: Method not stated |
|---------------|--|
| Participants | Participants: 212 current smokers.
Number smoked: not stated.
Age: not stated. |
Campbell 1991 *(Continued)*

| Interventions | 1. Intervention: Physician advice, inpatient counselling (1x, total not stated, type not stated). NRT (gum, dose 2-4 mg, for 3m) Follow up (5x at 2, 3, 5 wks, 3m, 6m in clinic by counsellor)
2. Control: Other (as above, placebo NRT gum) [Intensity 4 for both arms]
NRT: Yes |
|---|---|
| Outcomes | Abstinence: Sustained abstinence at 6m, 12m.
Validation: Expired air CO.
Died: None reported. |
| Notes | Not included in analysis by counselling intensity because arms differed only by use of NRT
Heart disease, lung disease and other given separately in analysis by diagnosis. |
Risk of bias		
Item	Authors' judgement	Description
Allocation concealment?	Unclear	B - Unclear

Campbell 1996

| Methods | Country: UK
Recruitment: Inpatients with respiratory or cardiovascular disease
Selected: Prepared to make quit attempt
Randomization: Method not stated |
|---|---|
| Participants | Participants: 62 current smokers.
Number smoked: not stated.
Age: not stated.
Approx. 75% had respiratory disease.
Therapists: Physician and non-specialist counsellor. |
| Interventions | 1. Intervention: Physician advice. Counselling (1x, total 30-60 mins, type information). NRT (patch, dose 17.5-35 mg, for 12 wks). Follow up (4x at 2, 4, 8, 12 wks in clinic by counsellor)
2. Control: Other (as above, placebo NRT patch) [Intensity 4 for both arms]
NRT: Yes |
| Outcomes | Abstinence: Sustained abstinence at 3, 6, 12m.
Validation: Expired air CO.
Died: None reported. |
Notes	Only data on inpatients extracted from study. Included in respiratory disease subcategory.	
Risk of bias		
Item	Authors' judgement	Description
CASIS 1992

Methods
- Country: USA
- Recruitment: Inpatients with coronary artery stenosis confirmed by catheterisation.
- Selected: Invited to participate.
- Randomization: Method not stated.

Participants
- Participants: 267 current smokers or recent quitters (50%, defined as at least 5 cig/day at any time in previous 2m).
- Number smoked: 25 cig/day.
- Age: 53 yrs average.
- 78 had acute MI, 21 recent MI, 152 other symptoms.
- Therapists: Masters level health educators.

Interventions
- 1. Intervention: Counselling (2x, total 40 mins, type not stated). Self-help materials, relaxation tapes. Follow up (4x at 1, 3 wks and 3m if quit or 2,4m if did not quit, by telephone) [Intensity 4]
- 2. Control: Advice only
- NRT: No

Outcomes
- Abstinence: Sustained abstinence at 6m, 12m
- Validation: Expired air CO.
- Died: None reported.

Notes
- Patients admitted with MI more likely to be quitters at 6m (74%). Evidence of interaction between intervention and illness.
- Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Chouinard 2005

Methods
- Country: Canada
- Recruitment: Inpatients with cardiovascular disease (MI, angina, CHF) or PVD
- Selected: Not by motivation
- Randomization: In blocks of 3-6, sealed envelope

Participants
- Participants: 168 past-month smokers.
- Number smoked: not stated.
- Age: 56 yrs av.
- Therapist: nurse
Chouinard 2005 (Continued)

| Interventions | 1. Intervention 1: Counselling by research nurse (1x, 10-60 mins, av. 40 min, tailored to stage of change), 23% used pharmacotherapy. [Intensity 2]
2. Intervention 2: As 1 plus telephone follow up, 6 calls over 2m post-discharge [Intensity 4]
3. Control: cessation advice
NRT: Yes (partial) |
| --- | --- |
| Outcomes | Abstinence: Sustained abstinence at 2 & 6 months
Validation: Urine cotinine or expired air CO
Died: 3 in 1, 1 in 2, 0 in 3. |
| Notes | Two interventions compared separately to control in intensity subgroups
Included in CVD subcategory |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Croghan 2005

| Methods | Country: USA
Recruitment: Inpatients having surgical resection of lung or oesophageal cancers
Selected: unclear
Randomization: Method not stated |
| --- | --- |
| Participants | Participants: 30 smokers admitted for surgery for newly diagnosed lung or oesophageal cancer.
Number smoked: not stated.
Age: not stated.
Therapist: doctor, nurse and trained smoking counsellor |
| Interventions | 1. Intervention: Physician advice from thoracic surgeons and study nurses. Counselling (1x 45 min. Stage of change assessed, individualized pharmacotherapy) [Intensity 2]
2. Control: Physician advice only
NRT: Yes |
| Outcomes | Abstinence: 7-day PP at 6m
Validation: expired air CO or saliva tobacco alkaloid
Died: 1 in 6m |
| Notes | |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>
De Busk 1994

Methods
Country: USA
Recruitment: Inpatients with acute MI.
Selected: Invited to participate if prepared to make a quit attempt
Randomization: Method not stated.

Participants
Participants: 252 current smokers or recent quitters (proportion not stated, defined as any tobacco use in previous 6m).
Number smoked: not stated.
Age: 57 yrs av.
First year after MI.
Therapists: Physician and nurse.

Interventions
1. Intervention: Physician advice; Counselling (1x, total not stated, type not stated); NRT ('reserved for highly-addicted patients'); Other (self-help materials, relaxation tapes); Follow up (8x at 48 hr, 1 wk, and every month for 6m by telephone) [Intensity 4]
2. Control: Advice only
NRT: Yes (partial)

Outcomes
Abstinence: Sustained abstinence at 6m, 12m.
Validation: Expired air CO and plasma cotinine.
Died: None reported.

Notes
Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Dornelas 2000

Methods
Country: USA
Recruitment: Inpatients with acute MI.
Selected: Invited to participate.
Randomization: Number drawn from envelope

Participants
Participants: 100 current smokers.
Number smoked: 29 cig/day.
Age: 54 yrs av.
Therapists: Psychologist.

Interventions
1. Intervention: Counselling (1x, total 20 mins, type behavioural); Follow up (7x at <1, 4, 8, 12, 16, 20, 26 wk by telephone) [Intensity 4]
2. Control: Advice only
NRT: No
Dornelas 2000 (Continued)

| Outcomes | Abstinence: PP at 12m.
| | Validation: Significant other
| | Died: 5 at 12m.
| Notes | Validation by significant other only in 70% of cases.
| | Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Feeney 2001

| Methods | Country: Australia
| | Recruitment: Inpatients admitted for acute MI to coronary care unit of 1 hospital
| | Selected: Invited to participate.
| | Randomization: sealed envelopes
| Participants | Participants: 198 current smokers (smoked in past week).
| | Number smoked: not stated.
| | Age: 54 yrs av.
| | Therapists: Physician and nurse.
| Interventions | 1. Intervention: Physician advice to quit, nurse counselling (time not specified, type cognitive/behavioural); Follow up (8x at 1,2,3,4 wks and 2,3,6,12m by telephone) [Intensity 4]
| | 2. Control: In hospital: same as intervention (physician advice to quit, nurse counselling); follow-up counselling available but no proactive contact; [Intensity 2]
| | NRT: No
| Outcomes | Abstinence: Sustained abstinence at 1m,3m, 12m.
| | Validation: Urinary cotinine (limit not stated)
| | Died: 9 at 12m.
| Notes | Very large treatment effect (31/92 vs 1/97) but risk of bias due to higher loss to follow up in control group. Excluded from meta-analyses because of heterogeneity.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>
Froelicher 2004

Methods
- Country: USA
- Recruitment: Inpatients with CVD or PVD admitted to 10 hospitals
- Selected: Willing to make quit attempt
- Randomization: stratified by hospital

Participants
- Participants: 277 current smokers or recent quitters (smoked in past month), willing to make serious quit attempt at discharge.
 - Gender: All females.
 - Number smoked: 20 cig/day.
 - Age: 61 yrs av.
 - Therapists: Physician and nurse.

Interventions
- 1. Intervention: Physician advice to quit, nurse counselling (30-45 mins, type cognitive/behavioural and relapse prevention); Follow up (5x at 2, 7, 21, 28, 90 days by telephone (5-10 min/call) [Intensity 4]
- 2. Control: modified usual care (physician advice + booklet)
- NRT: Patch or gum offered to selected women after discharge who had relapsed and wanted to try to quit (pharmacotherapy used by 20% of intervention and 23% of control group).

Outcomes
- Abstinence: 7-day PP at 12m.
- Validation: Saliva cotinine < 14 ng/ml OR family/friend verification
- Died: 11 at 12m.

Notes
- Included in CVD subcategory

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Risk of bias

Hajek 2002

Methods
- Country: UK
- Recruitment: Inpatients with acute MI.
- Selected: Invited to participate.
- Randomization: serially numbered opaque sealed envelopes

Participants
- Participants: 540 current smokers.
 - Number smoked: 23 cig/day.
 - Age: 56 yrs av.
 - Therapists: cardiac rehab nurse.

Interventions
- 1. Intervention: Nurse advice. Counselling (1x, total 20-30 min). Self-help materials. [Intensity 2]
- 2. Control: Brief advice and booklet
- NRT: No

Outcomes
- Abstinence: PP at 12m, with visit to self-reported non-smoker.
- Validation: Expired air CO and salivary cotinine.
Hajek 2002

(Continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died at 12m.</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Hasuo 2004

Methods

Country: Japan
Recruitment: Inpatients (all diagnoses) to 1 hospital
Selected: Intending to be quit on day of discharge
Randomization: By hospital clerk using computer program; stratified by smoking status, FTND, and self-efficacy

Participants

Participants: 120 current smokers or recent quitters (smoked in past month)
Diagnoses include cancer (n=37), cardiac (n=57)
Number smoked: not stated.
Age: not stated.
Therapists: Nurse.

Interventions

1. Intervention: nurse counselling (3 x 20 min sessions). Follow up (3x at 7, 21, 42 days by telephone) (5 min/call) [intensity 4]
2. Control: In hospital: same as intervention (nurse sessions, 3 x 20 min each) but no follow-up contact [Intensity 2]
NRT: No

Outcomes

Abstinence: Abstinence at 12m (type not stated).
Validation: urinary cotinine at 12m (not clear whether results are self-report or cotinine-validated)
Died: 6 at 12m.

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>
Hennrikus 2005

Methods
Country: USA
Recruitment: Inpatients (all diagnoses) admitted to 4 hospitals
Selected: Invited to participate.
Randomization: by research assistant from a list of randomly ordered assignments, but blinding at time of enrolment not specified

Participants
Participants: 2095 current smokers (smoked in past week and considered self to be regular smoker in month before admission).
Number smoked: not stated.
Age: 47 yrs av.
Therapists: Physician and nurse.

Interventions
1. Intervention: Physician advice to quit (60 seconds) + smoking cessation booklet + additional mailed booklet after discharge. [Intensity 1]
2. Intervention: Physician advice to quit (60 seconds) + nurse counselling (motivational interviewing and relapse prevention) for 20 min. av (note: 43% of counselling sessions conducted after discharge by telephone rather than at bedside). Follow up: 3-6 phone calls over 6m (10 min/call median). [Intensity 4]
3. Control: modified usual care: smoking cessation booklet in hospital
NRT: No

Outcomes
Abstinence: 7-day PP at 12m.
Validation: Saliva cotinine (<15 ng/ml)
Died: 78 at 12m.

Notes
High and differential levels of refusal to provide validation/mis-reporting

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Lewis 1998

Methods
Country: USA
Recruitment: Inpatients excluding certain cardiac conditions.
Selected: Prepared to make quit attempt.
Randomization: Computer-generated code.

Participants
Participants: 185 current smokers.
Number smoked: 24 cig/day.
Age: 43 yrs av.
12 ICD-9 diagnostic categories.
Therapists: Physician and nurse.

Interventions
1. Intervention: Physician advice. Counselling (1x, total 2-3 mins, type information). NRT (patch, dose 22mg, for 3 wks + 11 mg, for 3 wks). Self-help materials. Follow up (4x at 1,3,6 wks, 6m by telephone). [Intensity 4]
Lewis 1998

2. Intervention: Physician advice. Counselling (1x, total 2-3 mins, type information). Placebo patch. Self-help materials. Follow up (4x at 1,3,6 wks, 6m by telephone). [Intensity 4]
3. Control: Advice only
NRT: Yes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Abstinence: PP at 6m. Validation: Expired air CO. Died: None reported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>1 vs 2 for effect of NRT. 1+2 vs 3 for behavioural counselling intervention analysis. Highest quit rates found in patients with respiratory disease.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Miller 1997

Methods

Country: USA
Recruitment: Inpatients excluding obstetric and psychiatric patients. Selected: Prepared to make quit attempt, those wishing to do so alone excluded. Randomization: Sealed envelope.

Participants

Participants: 1942 current smokers.
Number smoked: 20 cig/day.
Age: 51 yrs av.
32% with cardiovascular, 12% pulmonary diagnosis.
Therapists: Physician and nurse counsellor.

Interventions

1. Intervention: Physician advice. Counselling (1x, total 30 mins, type behavioural). Self-help materials, relaxation tapes, video. Follow up (4x at 48hr, 1, 3 wks, 3m by telephone) [Intensity 4]
2. Intervention: Physician advice. Counselling (1x, total 30 mins, type behavioural). Self-help materials, relaxation tapes, video. Follow up (1x at 48 hr by telephone) [Intensity 3]
3. Control: Advice only
NRT: No

Outcomes

Abstinence: Sustained abstinence at 3, 6 & 12 months. Validation: Plasma cotinine or family member corroboration. Died: 82 at 12 mo.

Notes

1 vs 3 in intensive comparison, 2 vs 3 in minimal comparison
12 months abstinence (PP) 1+2 vs 3 separately for cardiovascular, pulmonary and other diagnosis.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocation concealment?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>A - Adequate</th>
</tr>
</thead>
</table>

Mohiuddin 2007

Methods

- **Country:** USA
- **Recruitment:** Inpatients with diagnosis of acute coronary syndrome (including MI) or decompensated CHF, admitted to CCU of 1 hospital
- **Selected:** Invited to participate.
- **Randomization:** method not stated

Participants

- **Participants:** 209 current smokers who had smoked for 5+ yrs, FTND>7.
 - Number smoked: 24 cig/day.
 - Age: 55 yrs av.
 - Therapists: Physician and trained tobacco counsellor or nurse.

Interventions

1. **Intervention:** Counselling (30 mins, type not specified). Self-help booklet. Free NRT and/or bupropion. Follow up: weekly group meetings (60 min session for up to 3m) with trained tobacco counsellor (content: behavioural counselling, social support, relaxation training, risk factor management). [Intensity 4]
2. **Control:** same inpatient component as intervention group: counselling (30 mins, type not specified). Self-help booklet. Free NRT and/or bupropion. No follow up offered. [Intensity 2]
- **NRT:** NRT or bupropion offered on individualized basis to both groups

Outcomes

- **Abstinence:** Sustained abstinence at 3m, 6m, 12m. (note: sustained abstinence to 24m reported but not used in pooling)
- **Validation:** CO
- **Died:** 15 at 12m (12 control, 3 intervention).

Notes

1 vs 2 in intensity 4 subgroup. Same in-hospital intervention; differed in follow-up component only. Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Molyneux 2003

Methods

- **Country:** UK
- **Recruitment:** Medical and surgical inpatients admitted to 1 hospital
- **Selected:** Invited to participate.
- **Randomization:** blocks of 9, method not stated and concealment not described

Participants

- **Participants:** 274 current smokers (smoked in past month).
 - Number smoked: 17 cig/day.
 - Age: 50 yrs av.
 - Therapists: Physician or nurse.
Molyneux 2003 (Continued)

| Interventions | 1. Intervention: brief counselling + booklet, no NRT. No follow up. [Intensity 2]
| | 2. Intervention: brief counselling (20 mins) + booklet + offer of open label NRT x 6 wks (choice of gum, patch, inhalator, lozenge, nasal spray); 96% used some NRT. No follow up. [Intensity 2]
| | 3. Control: usual care
| NRT: Yes |

| Outcomes | Abstinence: Sustained abstinence at 3m, 12m.
| | Validation: CO <10 ppm at 12m.
| | Died: not stated (therefore, deaths not excluded from pooled analysis).

| Notes | 1+2 vs 3 for intensity 2 comparison, 2 vs 1v for NRT comparison

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
<td></td>
</tr>
</tbody>
</table>

Nagle 2005

| Methods | Country: Australia
| | Recruitment: Inpatients (all diagnoses) admitted to 1 teaching hospital (excluded intensive care units)
| | Selected: Invited to participate.
| | Randomization: stratified by smoking status in past month, blocks of 20, using handheld computer with random number programme
| Participants | Participants: 1422 current smokers or quitters (smoked in past 12m).
| | Number smoked: not stated.
| | Age: not stated.
| | Therapists: nurse.
| Interventions | 1. Intervention: Nurse counselling (2 x 10 min sessions, type: withdrawal symptom management, coping skills) + booklet + offer of NRT in hospital and for 5 days post-discharge (3% received in hospital). Follow up: none. [Intensity 2]
| | 2. Control: modified usual care (Physician advice + booklet)
| NRT: Yes (partial) |

| Outcomes | Abstinence: 7-day PP at 12m. (Continuous self-reported abstinence also given)
| | Validation: Saliva cotinine <=15 ng/ml.
| | Died: 28 at 12m.

| Notes | Study includes recent quitters (smoked in past year but not in past month); results not stratified by baseline smoking status.

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
</table>
Nagle 2005 (Continued)

| Allocation concealment? | Yes | A - Adequate |

Ortigosa 2000

| Methods | Country: Spain
Recruitment: Inpatients with acute MI.
Selected: Invited to participate.
Randomization: Method not stated. |
|---|---|
| Participants | Participants: 90 current smokers.
Number smoked: 25 cig/day.
Age: 57 yrs av
Therapists: Physician. |
| Interventions | 1. Intervention: Physician advice. Follow up (3x at 2,3,4 wks by telephone). [Intensity 3]
2. Control: Usual care
NRT: No |
| Outcomes | Abstinence: PP at 12m.
Validation: Expired air CO.
Died: 3 at 12m. |
| Notes | Intervention not delivered by specialist counsellor.
Included in CVD subcategory |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Pedersen 2005

| Methods | Country: Denmark
Recruitment: Inpatients with cardiac disease
Selected: Invited to participate.
Randomization: sealed envelopes |
|---|---|
| Participants | Participants: 105 current smokers (not defined).
Number smoked: not stated.
Age: not stated.
Therapists: not stated |
| Interventions | 1. Intervention: usual hospital protocol; advice to quit + information about NRT + NRT available. Follow up: visits 5 times after discharge (30 min/meeting); [Intensity 4]
2. Control: usual care: advice to quit + information about NRT + NRT available.
NRT: Yes (partial) |
Pedersen 2005 (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Included in CVD subcategory</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Pederson 1991

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Participants: 74 current smokers. Number smoked: 25 cig/day. Age: 53 yrs av. 43% chronic bronchitis, 57% emphysema. Therapists: Non-specialist trained in counselling.</td>
</tr>
<tr>
<td>Interventions</td>
<td>1. Intervention: Physician advice (prior to admission). Counselling (3-9x, total 45-160 mins, type information). Self-help materials. No follow up. [Intensity 2] 2. Control: Advice only NRT: No</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Abstinence: PP at 6m. Validation: Serum COHb (in sample). Died: 8 at 6m.</td>
</tr>
<tr>
<td>Notes</td>
<td>8 deaths excluded, 8 lost to follow up included.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>
Pelletier 1998

| Methods | Country: Canada
| Recruitment: Inpatients with acute MI.
| Selected: Invited to participate.
| Randomization: Quasi-experimental allocation by hospital (one experimental and two control) |
| Participants | Participants: 504 current smokers.
| Number smoked: not stated.
| Age: not stated.
| Therapists: Nurse. |
| Interventions | 1. Intervention: Physician advice. Self-help materials. [Intensity 2]
| 2. Control: Usual care
| NRT: No. |
| Outcomes | Abstinence: self-reported PP at 12m
| Validation: None.
| Died: Not stated. |
| Notes | Included in CVD subcategory |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

Quist-Paulsen 2003

| Methods | Country: Norway
| Recruitment: Inpatients admitted to cardiac ward of 1 general hospital (Diagnoses: MI, unstable angina, post-CABG care)
| Selected: Invited to participate.
| Randomization: Serially numbered sealed envelopes |
| Participants | Participants: 240 current smokers (smoked daily before symptoms began).
| Number smoked: 15 cig/day.
| Age: 57 yrs av.
| Therapists: Nurse. |
| Interventions | 1. Intervention: Nurse counselling (1-2 times, time not specified, type: fear arousal, advice on using NRT); Follow up (5x at 2,7,21, days, 3m, 5m) by telephone, clinic visit to cardiac nurse at 6w); NRT: Gum or patch encouraged for subjects with strong urges to smoke in hospital. [Intensity 4]
| 2. Control: usual care (advice to quit + booklet)
| NRT: Yes |
| Outcomes | Abstinence: PP at 12m.
| Validation: Urine cotinine <2.0 mmol/mol creatinine.
| Died: 5 at 12m. |
Quist-Paulsen 2003
(Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Reid 2003

<table>
<thead>
<tr>
<th>Methods</th>
<th>Country: Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment: Inpatients with MI, CABG, coronary angioplasty, coronary angiography admitted to 1 cardiac hospital</td>
<td></td>
</tr>
<tr>
<td>Selected: Motivated to quit</td>
<td></td>
</tr>
<tr>
<td>Randomization: stratified by diagnosis on admission, degree of nicotine dependence, random numbers table, concealed until after initial counselling</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th>Participants: 254 current smokers (smoked in month before admission)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number smoked: not stated.</td>
<td></td>
</tr>
<tr>
<td>Age: 54 yrs av.</td>
<td></td>
</tr>
<tr>
<td>Therapists: Nurse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interventions</th>
<th>1. Intervention: Brief nurse counselling at bedside (5-10 mins) + booklet. Follow up: nurse call at 4 wks; if smoking, offered 3 x 20 min in-person counselling sessions (wks 4,8,12) and NRT patch recommended for 8 wks. [Intensity 4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Control: Brief nurse counselling (5-10 mins) + self-help booklet (same in hospital as intervention group)</td>
<td></td>
</tr>
<tr>
<td>NRT: Yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Abstinence: 7-day PP at 12m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation: Random sample of 25 self-reported non-smokers asked for CO validation; 91% validated, similar in both arms. Results not adjusted for this.</td>
<td></td>
</tr>
<tr>
<td>Died: 2 at 12m.</td>
<td></td>
</tr>
</tbody>
</table>

| Notes | Included in CVD subcategory |

<table>
<thead>
<tr>
<th>Risk of bias Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>
Rigotti 1994

Methods
- **Country:** USA
- **Recruitment:** Inpatients scheduled for CABS.
- **Selected:** Invited to participate.
- **Randomization:** Method not stated.

Participants
- Participants: 87 current smokers or recent quitters (38%, defined as at least 1 pack/cigs in previous 6m).
- Number smoked: 33 cig/day.
- Age: 58 yrs av.
- 82% of all CABG surgery.
- **Therapists:** Nurse.

Interventions
- **1. Intervention:** Counselling (3x, total 60 mins, type behavioural). Self-help materials, video. Follow up (1x at 1 wk by telephone); [Intensity 3]
- **2. Control:** Advice only
- **NRT:** No

Outcomes
- **Abstinence:** Sustained abstinence at 4m, 8m, 12m.
- **Validation:** Salivary cotinine.
- **Died:** 7 at 12m.

Notes
- Abstinence rates include smokers who had quit prior to surgery.
- Included in CVD subcategory

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Rigotti 1997

Methods
- **Country:** USA
- **Recruitment:** Inpatients in medical or surgical services.
- **Selected:** Invited to participate.
- **Randomization:** Method not stated.

Participants
- Participants: 615 current smokers or recent quitters (proportion not stated, defined as at least 1 cig in previous month).
- Number smoked: 24 cig/day.
- Age: 48 yrs av.
- 23% had cardiac or pulmonary diagnosis.
- **Therapists:** Research assistant and nurse.

Interventions
- **1. Intervention:** Physician advice (prompt on chart). Counselling (1x, total 15 mins, type behavioural).
- Self-help materials. Follow-up (1-3x at 1-3 wks by telephone); [Intensity 3]
- **2. Control:** Usual care
- **NRT:** "some" (~ around 4%).
Rigotti 1997

Outcomes
- Abstinence: PP at 6m.
- Validation: Salivary cotinine.
- Died: 35 at 12m.

Notes
- Randomization by eligibility, then listwise recruitment. 50% of patients could recall being given physician advice.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Rigotti 2006

Methods
- Country: USA
- Recruitment: Inpatients with cardiovascular disease (MI, unstable angina, CHF) or PVD admitted to 5 hospitals.
- Selected: Invited to participate.
- Randomization: computer-generated, enrolment staff blind

Participants
- Participants: 254 current smokers (smoked in past month) and willing to consider smoking cessation at discharge (no commitment required).
- Number smoked: 23/21 cig/day.
- Age: 56 yrs av.
- Therapists: Nurse.

Interventions
1. Intervention: Bupropion SR 300 mg/day x 12 wks, started in hospital. nurse counselling (30-45 min, type cognitive/behavioural and relapse prevention) in hospital + booklet + follow-up telephone calls (10 min/call) 5x at 2,7,21 days, 2m, 3m. Total counselling time: 85-90 mins.
2. Control: As above, but placebo pill

NRT
- No

Outcomes
- Abstinence: Continuous abstinence at 2,4,12, 52 wks.
- Validation: Saliva cotinine at 12 and 52 wks, CO at 2 and 4 wks.
- Died: 2 at 12m.

Notes
- Used for bupropion comparison and CV diagnosis, not for comparison of counselling intensity because both groups had same counselling.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>
Simon 1997

| Methods | Country: USA
Recruitment: Inpatients undergoing non-cardiac surgery.
Selected: Prepared to make quit attempt.
Randomization: Sealed envelope. |
|---|---|
| Participants | Participants: 299 current smokers.
Number smoked: 20 cig/day.
Age: 54 yrs av.
Most cardiovascular or respiratory disease.
Therapists: Public health educator. |
| Interventions | 1. Intervention: Inpatient counselling (1x, total 30-60 mins, type behavioural). Self-help materials, video. NRT if no contraindications (gum, dose not stated, for 3m). Follow up (5x at 1-3 wks, 2m, 3m by telephone). [Intensity 4]
2. Control: Advice only
NRT: Yes |
| Outcomes | Abstinence: PP at 12m
Validation: Serum or salivary cotinine or corroboration by significant other.
Died: 25 at 12m. |
| Notes | Approx 65% intervention and 17% control used NRT. Not associated with quitting in either group. |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Simon 2003

| Methods | Country: USA
Recruitment: Inpatients (all diagnoses) admitted to 1 hospital for military veterans.
Selected: Invited to participate.
Randomization: computer algorithm, no information on concealment |
|---|---|
| Participants | Participants: 223 current smokers (smoked >=20 cigarettes in wk before admission), contemplation or action stage of change, able to use NRT.
Number smoked: 23 cig/day.
Age: 55 yrs av.
Therapists: Nurse or health educator. |
| Interventions | 1. Intervention: Nurse or health educator counselling (30-60 mins; type cognitive/behavioural) + booklet + NRT patches x 8 wks. Follow up: 5x at 1,3 wks and 1m, 2m, 3m (<30 min/call); [Intensity 4]
2. Control: brief counselling (10 mins) + booklet + NRT patches x 8 wks. No follow-up contact.
NRT: Yes |
Simon 2003 (Continued)

| Outcomes | Abstinence: 7-day PP at 12m.
Validation: Saliva cotinine <15 ng/ml OR spousal corroboration.
Died: 14 at 12m. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Study tests marginal efficacy of counselling in setting of NRT</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Stevens 1993

Methods

Country: USA
Recruitment: Inpatients with stay >36 hrs excluding postpartum and psychiatric patients.
Selected: Invited to participate.
Randomization: Not random (alternated between hospitals on monthly basis).

Participants

Participants: 1119 current smokers or recent quitters (5%, defined as smoking regularly at any time in previous 3m).
Number smoked: 20 cig/day.
Age: 44 yrs av.
17% cardiovascular or respiratory diagnosis.
Therapists: Masters level cessation counsellors.

Interventions

1. Intervention: Counselling (1x, total 20 mins, type behavioural). Self-help materials, video. Follow up (1-2x at 1-3 wks by telephone); [Intensity 3]
2. Control: Usual care
NRT: No

Outcomes

Abstinence: Sustained abstinence at 3m, 12m.
Validation: None (low success in obtaining cotinine returns).
Died: None reported.

Notes

No significant baseline differences between patient characteristics in intervention and control.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>
Stevens 2000

Methods
- Country: USA
- Recruitment: Inpatients with stay >36 hours excluding postpartum and psychiatric patients.
- Selected: Invited to participate.
- Randomization: Not random (alternated between hospitals on monthly basis).

Participants
- Participants: 1173 current smokers or recent quitters (proportion not stated, defined as smoking regularly at any time in previous 3m).
- Numbers smoked: 19 cig/day.
- Age: 47 yrs av.
- Therapists: Respiratory therapist.

Interventions
1. Intervention: Counselling (1x, total 20 mins, type behavioural). Self-help materials, video. Follow up (1x at 1 wk by telephone); [Intensity 3]
2. Control: Usual care
NRT: No

Outcomes
- Abstinence: Sustained abstinence at 6m, 12m
- Validation: None.
- Died: None reported.

Notes
- Only 68% of intervention group actually offered intervention.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

Taylor 1990

Methods
- Country: USA
- Recruitment: Inpatients with acute MI.
- Selected: Invited to participate if prepared to make a quit attempt
- Randomization: Sealed envelope.

Participants
- Participants: 173 current smokers (within last 6m).
- Number smoked: 25 cig/day.
- Age: 58 yrs av.
- 10% previous MI.
- Therapists: Nurse.

Interventions
1. Intervention: Counselling (1x, total not stated, type behavioural), Self-help materials, relaxation tapes. NRT (gum ‘available’, dose not stated, period not stated). Follow up (6-7x at 1-3 wks, every month for 4m by telephone); [Intensity 4]
2. Control: Usual care.
NRT: Yes (partial)
Outcomes

Abstinence: Sustained abstinence at 3m, 12m.
Validation: Serum thiocyanate, expired air CO.
Died: 7 at 12m.

Notes

Higher loss to follow up in control group increases apparent effect of intervention when using ITT approach, so denominators in MA based on numbers followed up. NRT gum prescribed to 5 patients.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Vial 2002

Methods

Country: Australia
Recruitment: Inpatients (medical and surgical wards) of 1 teaching hospital
Selected: Willing to stop smoking
Randomization: blocks of 10, computer-generated random numbers, after enrolment

Participants

Participants: 102 current smokers (>= 10 cig/day)
Number smoked: not stated.
Age: not stated.
Therapists: Pharmacist.

Interventions

1. Intervention: Pharmacist consultation about NRT use (30–45 mins) + booklet + up to 16 wks patches at half-price. Follow-up: weekly visits x <=16 to obtain patches from hospital pharmacist. [Intensity 4]
2. Intervention as above, but follow-up patches supplied by community-based pharmacist
3. Control: usual care: advice to quit + booklet
NRT: Yes

Outcomes

Abstinence: Sustained abstinence at 3m, 6m, 12m.
Validation: CO test ‘whenever possible’ - frequency not stated
Died: not stated

Notes

Smoking cessation counselling not clearly done (pharmacist consultation about NRT); deletion of study does not change results.
18&2 compared to 3 in both the intensity analysis and the NRT efficacy analysis.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>
Intensity of intervention: 1. Single contact in hospital lasting <= 15 mins, no follow-up support. 2. One or more contacts in hospital lasting in total > 15 mins, no follow-up support. 3. Any hospital contact plus follow-up <=1 month. 4. Any hospital contact plus follow-up > 1 month.

av: average
CABG/S: coronary artery bypass graft/surgery
CCU: coronary care unit
CHF: congestive heart failure
CI: confidence interval
CO: carbon monoxide
COPD: Chronic Obstructive Pulmonary Disease
CVD: cardiovascular disease
FTND: Fagerstrom Test for Nicotine Dependence
m: month(s)
MI: myocardial infarction
NRT: nicotine replacement therapy
OR: odds ratio
PP: point prevalence
PVD: peripheral vascular disease

Characteristics of excluded studies *ordered by study ID*

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agewall 2001</td>
<td>Multifactorial intervention. No smoking cessation outcomes reported.</td>
</tr>
<tr>
<td>Allen 1998</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>Asfar 2005</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>Becker 2003</td>
<td>Participants admitted to observation unit for less than 24 hour hospital stay. Insufficient data.</td>
</tr>
<tr>
<td>Bize 2006</td>
<td>Not randomized (uses historical controls).</td>
</tr>
<tr>
<td>Blom 2005</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>BTS 1983</td>
<td>Included both inpatient and outpatient data (results for inpatients alone not available).</td>
</tr>
<tr>
<td>Burt 1974</td>
<td>Not randomized.</td>
</tr>
<tr>
<td>Chan 2003</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>Choo 2004</td>
<td>Short follow up (1m).</td>
</tr>
<tr>
<td>Colby 1998</td>
<td>Short follow up (3m). Enrolled only adolescents.</td>
</tr>
<tr>
<td>Cole 2001</td>
<td>Review article (no new data).</td>
</tr>
<tr>
<td>Dale 1995</td>
<td>Intervention not delivered in inpatient setting (some participants admitted to inpatient unit for smoking intervention).</td>
</tr>
<tr>
<td>Author</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Davies 2005</td>
<td>Insufficient data on cessation outcome.</td>
</tr>
<tr>
<td>Elsony 2005</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>Emmons 2000</td>
<td>Baseline and pharmacy data from a trial. Main outcomes not reported.</td>
</tr>
<tr>
<td>Fung 2005</td>
<td>Not randomized.</td>
</tr>
<tr>
<td>Galvin 2001</td>
<td>Intervention not delivered in inpatient setting.</td>
</tr>
<tr>
<td>Gariti 2002</td>
<td>Participants were inpatients in a substance abuse treatment unit.</td>
</tr>
<tr>
<td>Gritz 1993</td>
<td>Intervention not delivered in inpatient setting (only recruitment carried out in hospital setting).</td>
</tr>
<tr>
<td>Hand 2002</td>
<td>Included both inpatient and outpatient data (results for inpatients alone not available).</td>
</tr>
<tr>
<td>Hilleman 2004</td>
<td>Not randomized.</td>
</tr>
<tr>
<td>Jeong 2002</td>
<td>Multifactorial intervention with little smoking cessation content.</td>
</tr>
<tr>
<td>Johnson 1999</td>
<td>Not randomized.</td>
</tr>
<tr>
<td>Jones 2001</td>
<td>Intervention delivered after discharge from ITU.</td>
</tr>
<tr>
<td>Joseph 2005</td>
<td>Intervention goal smoking reduction, not cessation (enrolled only smokers who do not plan to quit).</td>
</tr>
<tr>
<td>Lacasse 2005</td>
<td>Abstract only. Insufficient data.</td>
</tr>
<tr>
<td>Lisspers 1999</td>
<td>Intervention delivered after discharge following PTCA</td>
</tr>
<tr>
<td>McHugh 2001</td>
<td>Multicomponent intervention delivered prior to hospitalisation for CABG.</td>
</tr>
<tr>
<td>Meenan 1998</td>
<td>Not randomised.</td>
</tr>
<tr>
<td>Moller 2002</td>
<td>Intervention delivered prior to hospital admission.</td>
</tr>
<tr>
<td>Ong 2005</td>
<td>Not an RCT.</td>
</tr>
<tr>
<td>Ranote 2003</td>
<td>Not an RCT (quasi-experimental design). Abstract only. Insufficient data.</td>
</tr>
<tr>
<td>Ratner 2004</td>
<td>Intervention delivered prior to hospital admission.</td>
</tr>
<tr>
<td>Reid 2006</td>
<td>Not an RCT (uncontrolled cohort study).</td>
</tr>
<tr>
<td>Study</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Richman 2000</td>
<td>Patients not admitted to hospital, follow up 3m.</td>
</tr>
<tr>
<td>Rissel 2000</td>
<td>Intervention delivered to outpatients. Not randomized.</td>
</tr>
<tr>
<td>Schmitz 1999</td>
<td>No control / usual care group.</td>
</tr>
<tr>
<td>Strecher 1985</td>
<td>Not randomized.</td>
</tr>
<tr>
<td>Takahashi 2006</td>
<td>Intervention not delivered in inpatient setting</td>
</tr>
<tr>
<td>Taylor 2005</td>
<td>Not an RCT (observational study only).</td>
</tr>
<tr>
<td>Wakefield 2004</td>
<td>Intervention not delivered in inpatient setting</td>
</tr>
<tr>
<td>Warner 2005</td>
<td>Intervention not delivered in inpatient setting (prior to hospital admission).</td>
</tr>
<tr>
<td>Wewers 1994</td>
<td>Short follow up (5 wks).</td>
</tr>
<tr>
<td>Wolfenden 2005</td>
<td>Intervention not delivered in inpatient setting (begun pre-operatively).</td>
</tr>
</tbody>
</table>

ITU: Intensive Therapy Unit
CABG: coronary artery bypass graft
m: month(s)
PTCA: percutaneous transluminal coronary angioplasty
DATA AND ANALYSES

Comparison 1. Intervention v Control, by intensity of counselling intervention

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quit at longest follow-up (6+ months)</td>
<td>29</td>
<td></td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.1 Intensity 1</td>
<td>1</td>
<td>1351</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.16 [0.80, 1.67]</td>
</tr>
<tr>
<td>1.2 Intensity 2</td>
<td>8</td>
<td>3617</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.08 [0.89, 1.29]</td>
</tr>
<tr>
<td>1.3 Intensity 3</td>
<td>6</td>
<td>4476</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.09 [0.91, 1.30]</td>
</tr>
<tr>
<td>1.4 Intensity 4</td>
<td>17</td>
<td>5608</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.65 [1.44, 1.90]</td>
</tr>
</tbody>
</table>

Comparison 2. Intervention v Control, by intervention intensity within diagnostic subgroups

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All hospital patients, unselected by diagnosis</td>
<td>11</td>
<td></td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.1 Intensity 1</td>
<td>1</td>
<td>1351</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.16 [0.80, 1.67]</td>
</tr>
<tr>
<td>1.2 Intensity 2</td>
<td>2</td>
<td>1668</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>0.90 [0.62, 1.30]</td>
</tr>
<tr>
<td>1.3 Intensity 3</td>
<td>4</td>
<td>4309</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.12 [0.93, 1.34]</td>
</tr>
<tr>
<td>1.4 Intensity 4</td>
<td>6</td>
<td>3393</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.43 [1.17, 1.75]</td>
</tr>
<tr>
<td>2 Patients with cardiovascular disease</td>
<td>18</td>
<td></td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>2.1 Intensity 2</td>
<td>4</td>
<td>1853</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.14 [0.92, 1.43]</td>
</tr>
<tr>
<td>2.2 Intensity 3</td>
<td>3</td>
<td>615</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.07 [0.74, 1.55]</td>
</tr>
<tr>
<td>2.3 Intensity 4</td>
<td>11</td>
<td>2408</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.81 [1.53, 2.15]</td>
</tr>
<tr>
<td>2.4 Nicotine replacement therapy</td>
<td>1</td>
<td>85</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.25 [0.50, 3.13]</td>
</tr>
<tr>
<td>2.5 Bupropion</td>
<td>1</td>
<td>246</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.56 [0.79, 3.06]</td>
</tr>
<tr>
<td>3 Patients with respiratory disease</td>
<td>4</td>
<td></td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>
Comparison 3. Intervention v Control, trials of pharmacotherapy (pharmacotherapy systematically varied by group)

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quit at longest follow-up (6+ months)</td>
<td>6</td>
<td></td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.1 NRT v Placebo or no NRT</td>
<td>5</td>
<td>644</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.47 [0.92, 2.35]</td>
</tr>
<tr>
<td>1.2 Bupropion vs Placebo</td>
<td>1</td>
<td>246</td>
<td>Odds Ratio (M-H, Fixed, 95% CI)</td>
<td>1.56 [0.79, 3.06]</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1 Intervention v Control, by intensity of counselling intervention, Outcome 1 Quit at longest follow-up (6+ months).

Review: Interventions for smoking cessation in hospitalised patients
Comparison: Intervention v Control, by intensity of counselling intervention
Outcome: 1 Quit at longest follow-up (6+ months)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Intervention n/N</th>
<th>Control n/N</th>
<th>Odds Ratio (M-H, Fixed, 95% CI)</th>
<th>Weight</th>
<th>Odds Ratio (M-H, Fixed, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Intensity 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennrikus 2005</td>
<td>68/678</td>
<td>59/673</td>
<td>1.16 [0.80, 1.67]</td>
<td>100.0%</td>
<td>1.16 [0.80, 1.67]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>678</td>
<td>673</td>
<td>100.0%</td>
<td>1.16</td>
<td>[0.80, 1.67]</td>
</tr>
<tr>
<td>Total events: 68 (Intervention), 59 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.79 (P = 0.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Intensity 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolman 2002</td>
<td>103/334</td>
<td>110/401</td>
<td>32.0%</td>
<td>2.28</td>
<td>[0.83, 6.24]</td>
</tr>
<tr>
<td>Chouinard 2005</td>
<td>13/53</td>
<td>7/56</td>
<td>2.4%</td>
<td>0.52</td>
<td>[0.10, 2.58]</td>
</tr>
<tr>
<td>Croghan 2005</td>
<td>11/19</td>
<td>8/11</td>
<td>2.0%</td>
<td>0.86</td>
<td>[0.60, 1.23]</td>
</tr>
<tr>
<td>Hajek 2002</td>
<td>94/254</td>
<td>102/251</td>
<td>29.9%</td>
<td>0.86</td>
<td>[0.60, 1.23]</td>
</tr>
<tr>
<td>Molyneux 2003</td>
<td>14/182</td>
<td>7/92</td>
<td>4.0%</td>
<td>1.01</td>
<td>[0.39, 2.60]</td>
</tr>
<tr>
<td>Nagle 2005</td>
<td>48/698</td>
<td>54/696</td>
<td>23.3%</td>
<td>2.1</td>
<td>[0.63, 5.28]</td>
</tr>
<tr>
<td>Pederson 1991</td>
<td>10/35</td>
<td>6/31</td>
<td>2.1%</td>
<td>1.67</td>
<td>[0.53, 5.28]</td>
</tr>
<tr>
<td>Pellesier 1998</td>
<td>63/412</td>
<td>7/92</td>
<td>4.5%</td>
<td>2.19</td>
<td>[0.87, 4.96]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1987</td>
<td>1630</td>
<td>100.0%</td>
<td>1.08</td>
<td>[0.89, 1.29]</td>
</tr>
<tr>
<td>Total events: 356 (Intervention), 301 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued...)

Interventions for smoking cessation in hospitalised patients (Review)
Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Intervention</th>
<th>Control</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Intensity 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1997</td>
<td>64/460</td>
<td>122/942</td>
<td>29.8 % 1.09 [0.78, 1.50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortizosa 2000</td>
<td>26/42</td>
<td>31/45</td>
<td>4.9 % 0.73 [0.30, 1.78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigotti 1994</td>
<td>21/41</td>
<td>20/99</td>
<td>4.3 % 1.00 [0.41, 2.40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigotti 1997</td>
<td>25/307</td>
<td>27/308</td>
<td>10.7 % 0.92 [0.52, 1.63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens 1993</td>
<td>61/453</td>
<td>61/666</td>
<td>18.5 % 1.54 [1.06, 2.25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens 2000</td>
<td>77/541</td>
<td>93/632</td>
<td>31.8 % 0.96 [0.69, 1.33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1844</td>
<td>2632</td>
<td>100.0 % 1.09 [0.91, 1.30]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 274 (Intervention), 354 (Control)
Heterogeneity: Chi² = 9.23, df = 7 (P = 0.24); I² = 24%
Test for overall effect: Z = 0.77 (P = 0.44)

4 Intensity 4

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Intervention</th>
<th>Control</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIS 1992</td>
<td>44/133</td>
<td>28/123</td>
<td>6.1 % 1.68 [0.96, 2.92]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chouinard 2005</td>
<td>13/55</td>
<td>7/56</td>
<td>1.7 % 2.17 [0.79, 5.93]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Busk 1994</td>
<td>92/131</td>
<td>64/121</td>
<td>6.2 % 2.10 [1.25, 3.52]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domelas 2000</td>
<td>28/54</td>
<td>16/46</td>
<td>2.6 % 2.02 [0.90, 4.53]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Froelicher 2004</td>
<td>64/134</td>
<td>55/132</td>
<td>9.0 % 1.28 [0.79, 2.08]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasuo 2004</td>
<td>32/60</td>
<td>25/54</td>
<td>3.8 % 1.33 [0.63, 2.77]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennrikus 2005</td>
<td>66/666</td>
<td>59/673</td>
<td>16.5 % 1.14 [0.79, 1.66]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis 1998</td>
<td>10/124</td>
<td>3/61</td>
<td>1.2 % 1.70 [0.45, 6.40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1997</td>
<td>100/540</td>
<td>122/942</td>
<td>22.6 % 1.53 [1.14, 2.04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mohiuddin 2007</td>
<td>43/109</td>
<td>11/100</td>
<td>2.2 % 5.27 [2.53, 10.99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedersen 2005</td>
<td>28/54</td>
<td>20/51</td>
<td>3.1 % 1.67 [0.77, 3.62]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quist-Paulsen 2003</td>
<td>57/115</td>
<td>44/120</td>
<td>6.8 % 1.70 [1.01, 2.86]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reid 2003</td>
<td>49/125</td>
<td>46/127</td>
<td>8.6 % 1.14 [0.68, 1.89]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon 1997</td>
<td>20/157</td>
<td>9/142</td>
<td>2.6 % 2.16 [0.95, 4.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon 2003</td>
<td>30/102</td>
<td>21/107</td>
<td>4.5 % 1.71 [0.90, 3.23]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor 1990</td>
<td>47/72</td>
<td>20/58</td>
<td>2.4 % 3.57 [1.73, 7.39]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vial 2002</td>
<td>9/42</td>
<td>1/22</td>
<td>0.3 % 5.73 [0.68, 48.54]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>2673</td>
<td>2935</td>
<td>100.0 % 1.65 [1.44, 1.90]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 732 (Intervention), 551 (Control)
Heterogeneity: Chi² = 4.97, df = 5 (P = 0.42); I² = 0.0%
Test for overall effect: Z = 0.97 (P = 0.33)
Analysis 2.1. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 1 All hospital patients, unselected by diagnosis.

Review: Interventions for smoking cessation in hospitalised patients

Comparison: 2 Intervention v Control, by intervention intensity within diagnostic subgroups

Outcome: 1 All hospital patients, unselected by diagnosis

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Odds Ratio</th>
<th>Weight</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>1 intensity 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennrikus 2005</td>
<td>68/678</td>
<td>59/673</td>
<td>1.16 [0.80, 1.67]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>678</td>
<td>673</td>
<td>100.0 %</td>
<td>1.16 [0.80, 1.67]</td>
<td>1.16 [0.80, 1.67]</td>
</tr>
<tr>
<td>Total events:</td>
<td>68 (Treatment), 59 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.79 (P = 0.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Intensity 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molyneux 2003</td>
<td>14/182</td>
<td>7/92</td>
<td>1.01 [0.39, 2.60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagle 2005</td>
<td>48/698</td>
<td>54/696</td>
<td>0.88 [0.59, 1.31]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>880</td>
<td>788</td>
<td>100.0 %</td>
<td>0.90 [0.62, 1.30]</td>
<td>0.90 [0.62, 1.30]</td>
</tr>
<tr>
<td>Total events:</td>
<td>62 (Treatment), 61 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi2 = 0.07, df = 1 (P = 0.79); I2 =0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.57 (P = 0.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Intensity 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1997</td>
<td>64/460</td>
<td>122/942</td>
<td>1.09 [0.78, 1.50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigotti 1997</td>
<td>25/307</td>
<td>27/308</td>
<td>1.18 [0.52, 1.63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens 1993</td>
<td>61/453</td>
<td>61/666</td>
<td>1.54 [1.06, 2.25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens 2000</td>
<td>77/541</td>
<td>93/632</td>
<td>0.96 [0.69, 1.33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1761</td>
<td>2548</td>
<td>100.0 %</td>
<td>1.12 [0.93, 1.34]</td>
<td>1.12 [0.93, 1.34]</td>
</tr>
<tr>
<td>Total events:</td>
<td>227 (Treatment), 303 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi2 = 4.10, df = 3 (P = 0.25); I2 =27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.16 (P = 0.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Intensity 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasuo 2004</td>
<td>32/60</td>
<td>25/54</td>
<td>1.33 [0.63, 2.77]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennrikus 2005</td>
<td>66/666</td>
<td>59/673</td>
<td>1.14 [0.79, 1.66]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis 1998</td>
<td>10/124</td>
<td>3/61</td>
<td>2.4 [0.45, 6.40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1997</td>
<td>100/540</td>
<td>122/942</td>
<td>1.53 [1.14, 2.04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon 2003</td>
<td>30/102</td>
<td>21/107</td>
<td>0.92 [0.39, 2.32]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued...)

© 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 2.2. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 2 Patients with cardiovascular disease.

Review: Interventions for smoking cessation in hospitalised patients

Comparison: 2 Intervention v Control, by intervention intensity within diagnostic subgroups

Outcome: 2 Patients with cardiovascular disease

Study or subgroup	Treatment	Control	Odds Ratio	Weight	Odds Ratio
Study or subgroup	n/N	n/N	M-H,Fixed,95% CI	M-H,Fixed,95% CI	M-H,Fixed,95% CI
Vial 2002	9/42	1/22	0.7	0.73 [0.68, 4.854]	
Subtotal (95% CI)	1534	1859	100.0 %	1.43 [1.17, 1.75]	
Total events: 247 (Treatment), 231 (Control)					
Heterogeneity: Chi2 = 3.62, df = 5 ($P = 0.61$); I2 =0.0%					
Test for overall effect: Z = 3.48 ($P = 0.00050$)					

Study or subgroup	Treatment	Control	Odds Ratio	Weight	Odds Ratio
Intensity 2	103/334	110/401	46.5 %	1.18 [0.86, 1.62]	
Chouinard 2005	13/53	7/56	3.5 %	2.28 [0.83, 6.24]	
Hajek 2002	94/254	102/251	43.5 %	0.86 [0.60, 1.23]	
Pelletier 1998	63/412	79/2	6.5 %	2.19 [0.97, 4.96]	
Subtotal (95% CI)	1053	800	100.0 %	1.14 [0.92, 1.43]	
Total events: 273 (Treatment), 226 (Control)					
Heterogeneity: Chi2 = 6.73, df = 3 ($P = 0.08$); I2 =55%					
Test for overall effect: Z = 1.20 ($P = 0.23$)					

Study or subgroup	Treatment	Control	Odds Ratio	Weight	Odds Ratio
Miller 1997	38/138	74/310	60.7 %	1.21 [0.77, 1.91]	
Ortigosa 2000	26/42	31/45	20.9 %	0.73 [0.30, 1.78]	
Rigotti 1994	21/41	20/39	18.4 %	1.00 [0.41, 2.40]	
Subtotal (95% CI)	221	394	100.0 %	1.07 [0.74, 1.55]	
Total events: 85 (Treatment), 125 (Control)					
Heterogeneity: Chi2 = 1.01, df = 2 ($P = 0.60$); I2 =0.2%					
Test for overall effect: Z = 0.37 ($P = 0.71$)					
Study or subgroup	Treatment	Control	Odds Ratio	Weight	(Continued)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
</tr>
<tr>
<td>3 Intensity 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIS 1992</td>
<td>44/133</td>
<td>28/123</td>
<td></td>
<td>10.1 %</td>
<td>1.68 [0.96, 2.92]</td>
</tr>
<tr>
<td>Chouinard 2005</td>
<td>13/55</td>
<td>7/56</td>
<td></td>
<td>2.8 %</td>
<td>2.17 [0.79, 5.93]</td>
</tr>
<tr>
<td>De Busk 1994</td>
<td>92/131</td>
<td>64/121</td>
<td></td>
<td>10.3 %</td>
<td>2.10 [1.25, 3.52]</td>
</tr>
<tr>
<td>Dornelas 2000</td>
<td>28/54</td>
<td>16/46</td>
<td></td>
<td>4.3 %</td>
<td>2.02 [0.90, 4.53]</td>
</tr>
<tr>
<td>Froelicher 2004</td>
<td>64/134</td>
<td>55/132</td>
<td></td>
<td>15.1 %</td>
<td>1.28 [0.79, 2.08]</td>
</tr>
<tr>
<td>Miller 1997</td>
<td>62/182</td>
<td>74/310</td>
<td></td>
<td>18.8 %</td>
<td>1.65 [1.10, 2.46]</td>
</tr>
<tr>
<td>Mohuddin 2007</td>
<td>43/109</td>
<td>11/100</td>
<td></td>
<td>3.6 %</td>
<td>5.27 [2.53, 10.99]</td>
</tr>
<tr>
<td>Pedersen 2005</td>
<td>28/54</td>
<td>20/51</td>
<td></td>
<td>5.2 %</td>
<td>1.67 [0.77, 3.62]</td>
</tr>
<tr>
<td>Quist-Paulsen 2003</td>
<td>57/115</td>
<td>44/120</td>
<td></td>
<td>11.3 %</td>
<td>1.70 [1.01, 2.86]</td>
</tr>
<tr>
<td>Reid 2003</td>
<td>49/125</td>
<td>46/127</td>
<td></td>
<td>14.5 %</td>
<td>1.14 [0.68, 1.89]</td>
</tr>
<tr>
<td>Taylor 1990</td>
<td>47/122</td>
<td>20/58</td>
<td></td>
<td>4.0 %</td>
<td>3.57 [1.73, 7.39]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1164</td>
<td>1244</td>
<td></td>
<td>100.0 %</td>
<td>1.81 [1.53, 2.15]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>527 (Treatment), 385 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi² = 17.57, df = 10 (P = 0.06); I² =43%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 6.77 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Nicotine replacement therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell 1991</td>
<td>15/44</td>
<td>12/41</td>
<td></td>
<td>100.0 %</td>
<td>1.25 [0.50, 3.13]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>44</td>
<td>41</td>
<td></td>
<td>100.0 %</td>
<td>1.25 [0.50, 3.13]</td>
</tr>
<tr>
<td>Total events:</td>
<td>15 (Treatment), 12 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.48 (P = 0.63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Bupropion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigotti 2006</td>
<td>25/124</td>
<td>17/122</td>
<td></td>
<td>100.0 %</td>
<td>1.56 [0.79, 3.06]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>124</td>
<td>122</td>
<td></td>
<td>100.0 %</td>
<td>1.56 [0.79, 3.06]</td>
</tr>
<tr>
<td>Total events:</td>
<td>25 (Treatment), 17 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.29 (P = 0.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis 2.3. Comparison 2 Intervention v Control, by intervention intensity within diagnostic subgroups, Outcome 3 Patients with respiratory disease.

Review: Interventions for smoking cessation in hospitalised patients

Comparison: 2 Intervention v Control, by intervention intensity within diagnostic subgroups

Outcome: 3 Patients with respiratory disease

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell 1991</td>
<td>6/56</td>
<td>8/55</td>
<td>0.71 [0.23, 2.18]</td>
<td></td>
</tr>
<tr>
<td>Campbell 1996</td>
<td>8/30</td>
<td>3/32</td>
<td>3.52 [0.83, 14.81]</td>
<td></td>
</tr>
<tr>
<td>Miller 1997</td>
<td>34/113</td>
<td>40/113</td>
<td>0.79 [0.45, 1.37]</td>
<td></td>
</tr>
<tr>
<td>Pederson 1991</td>
<td>10/35</td>
<td>57/231</td>
<td>1.22 [0.65, 2.70]</td>
<td></td>
</tr>
</tbody>
</table>

Analysis 3.1. Comparison 3 Intervention v Control, trials of pharmacotherapy (pharmacotherapy systematically varied by group), Outcome 1 Quit at longest follow-up (6+ months).

Review: Interventions for smoking cessation in hospitalised patients

Comparison: 3 Intervention v Control, trials of pharmacotherapy (pharmacotherapy systematically varied by group)

Outcome: 1 Quit at longest follow-up (6+ months)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Intervention</th>
<th>Control</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Odds Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRT v Placebo or no NRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell 1991</td>
<td>21/107</td>
<td>21/105</td>
<td>58.0 % 0.98 [0.50, 1.92]</td>
<td>580 %</td>
<td>0.98 [0.50, 1.92]</td>
</tr>
<tr>
<td>Campbell 1996</td>
<td>8/30</td>
<td>3/32</td>
<td>7.2 % 3.52 [0.83, 14.81]</td>
<td>7.2 %</td>
<td>3.52 [0.83, 14.81]</td>
</tr>
<tr>
<td>Lewis 1998</td>
<td>4/62</td>
<td>7/62</td>
<td>19.1 % 0.64 [0.17, 2.40]</td>
<td>19.1 %</td>
<td>0.64 [0.17, 2.40]</td>
</tr>
<tr>
<td>Molyneux 2003</td>
<td>10/91</td>
<td>4/91</td>
<td>12.1 % 2.69 [0.81, 8.90]</td>
<td>12.1 %</td>
<td>2.69 [0.81, 8.90]</td>
</tr>
<tr>
<td>Vial 2002</td>
<td>9/42</td>
<td>1/22</td>
<td>3.5 % 5.73 [0.68, 48.54]</td>
<td>3.5 %</td>
<td>5.73 [0.68, 48.54]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>332</td>
<td>312</td>
<td>100.0 % 1.47 [0.92, 2.35]</td>
<td>100.0 % 1.47 [0.92, 2.35]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 52 (Intervention), 35 (Control)

Heterogeneity: $\chi^2 = 6.86, df = 4 (P = 0.14); I^2 = 42\%$

Test for overall effect: $Z = 1.62 (P = 0.11)$
<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Intervention n/N</th>
<th>Control n/N</th>
<th>Odds Ratio M-H,Fixed,95% CI</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Bupropion vs Placebo</td>
<td>Rigotti 2006 25/124</td>
<td>17/122</td>
<td>1.56 [0.79, 3.06]</td>
<td>100.0 %</td>
</tr>
</tbody>
</table>

Subtotal (95% CI) 124 122 100.0 % 1.56 [0.79, 3.06]

Total events: 25 (Intervention), 17 (Control)

Heterogeneity: not applicable

Test for overall effect: Z = 1.29 (P = 0.20)

APPENDICES

Appendix 1. Glossary of tobacco-specific terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstinence</td>
<td>A period of being quit, i.e. stopping the use of cigarettes or other tobacco products, May be defined in various ways; see also: point prevalence abstinence; prolonged abstinence; continuous/sustained abstinence</td>
</tr>
<tr>
<td>Biochemical verification</td>
<td>Also called 'biochemical validation' or 'biochemical confirmation': A procedure for checking a tobacco user’s report that he or she has not smoked or used tobacco. It can be measured by testing levels of nicotine or cotinine or other chemicals in blood, urine, or saliva, or by measuring levels of carbon monoxide in exhaled breath or in blood.</td>
</tr>
<tr>
<td>Bupropion</td>
<td>A pharmaceutical drug originally developed as an antidepressant, but now also licensed for smoking cessation; trade names Zyban, Wellbutrin (when prescribed as an antidepressant)</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>A colourless, odourless highly poisonous gas found in tobacco smoke and in the lungs of people who have recently smoked, or (in smaller amounts) in people who have been exposed to tobacco smoke. May be used for biochemical verification of abstinence.</td>
</tr>
<tr>
<td>Cessation</td>
<td>Also called ‘quitting’ The goal of treatment to help people achieve abstinence from smoking or other tobacco use, also used to describe the process of changing the behaviour</td>
</tr>
</tbody>
</table>
| Continuous abstinence | Also called ‘sustained abstinence’ A measure of cessation often used in clinical trials involving avoidance of all tobacco use since the quit day until the time the assessment is made. The definition occasionally
allows for lapses. This is the most rigorous measure of abstinence

<table>
<thead>
<tr>
<th>‘Cold Turkey’</th>
<th>Quitting abruptly, and/or quitting without behavioural or pharmaceutical support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craving</td>
<td>A very intense urge or desire [to smoke]. See: Shiffman et al ‘Recommendations for the assessment of tobacco craving and withdrawal in smoking cessation trials’ Nicotine & Tobacco Research 2004: 6(4): 599-614</td>
</tr>
<tr>
<td>Dopamine</td>
<td>A neurotransmitter in the brain which regulates mood, attention, pleasure, reward, motivation and movement</td>
</tr>
<tr>
<td>Efficacy</td>
<td>Also called ‘treatment effect’ or ‘effect size’: The difference in outcome between the experimental and control groups</td>
</tr>
<tr>
<td>Harm reduction</td>
<td>Strategies to reduce harm caused by continued tobacco/nicotine use, such as reducing the number of cigarettes smoked, or switching to different brands or products, e.g. potentially reduced exposure products (PREPs), smokeless tobacco.</td>
</tr>
<tr>
<td>Lapse/slip</td>
<td>Terms sometimes used for a return to tobacco use after a period of abstinence. A lapse or slip might be defined as a puff or two on a cigarette. This may proceed to relapse, or abstinence may be regained. Some definitions of continuous, sustained or prolonged abstinence require complete abstinence, but some allow for a limited number or duration of slips. People who lapse are very likely to relapse, but some treatments may have their effect by helping people recover from a lapse.</td>
</tr>
<tr>
<td>nAChR</td>
<td>[neural nicotinic acetylcholine receptors]: Areas in the brain which are thought to respond to nicotine, forming the basis of nicotine addiction by stimulating the overflow of dopamine</td>
</tr>
<tr>
<td>Nicotine</td>
<td>An alkaloid derived from tobacco, responsible for the psychoactive and addictive effects of smoking.</td>
</tr>
<tr>
<td>Nicotine Replacement Therapy (NRT)</td>
<td>A smoking cessation treatment in which nicotine from tobacco is replaced for a limited period by pharmaceutical nicotine. This reduces the craving and withdrawal experienced during the initial period of abstinence while users are learning to be tobacco-free. The nicotine dose can be taken through the skin, using patches, by inhaling a spray, or by mouth using gum or lozenges.</td>
</tr>
<tr>
<td>Outcome</td>
<td>Often used to describe the result being measured in trials that is of relevance to the review. For example smoking cessation is the outcome used in reviews of ways to help smokers quit. The exact outcome in terms of the definition of abstinence and the length of time that has elapsed since the quit attempt was made may vary from trial to trial.</td>
</tr>
<tr>
<td>Pharmacotherapy</td>
<td>A treatment using pharmaceutical drugs, e.g. NRT, bupropion</td>
</tr>
<tr>
<td>Point prevalence abstinence (PPA)</td>
<td>A measure of cessation based on behaviour at a particular point in time, or during a relatively brief specified period, e.g. 24 hours, 7 days. It may include a mixture of recent and long-term quitters. cf. prolonged abstinence, continuous abstinence</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prolonged abstinence</td>
<td>A measure of cessation which typically allows a 'grace period' following the quit date (usually of about two weeks), to allow for slips/lapses during the first few days when the effect of treatment may still be emerging. See: Hughes et al 'Measures of abstinence in clinical trials: issues and recommendations'; Nicotine & Tobacco Research, 2003: 5 (1); 13-25</td>
</tr>
<tr>
<td>Relapse</td>
<td>A return to regular smoking after a period of abstinence</td>
</tr>
<tr>
<td>Secondhand smoke</td>
<td>Also called passive smoking or environmental tobacco smoke [ETS] A mixture of smoke exhaled by smokers and smoke released from smouldering cigarettes, cigars, pipes, bidis, etc. The smoke mixture contains gases and particulates, including nicotine, carcinogens and toxins.</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>The belief that one will be able to change one's behaviour, e.g. to quit smoking</td>
</tr>
<tr>
<td>SPC [Summary of Product Characteristics]</td>
<td>Advice from the manufacturers of a drug, agreed with the relevant licensing authority, to enable health professionals to prescribe and use the treatment safely and effectively.</td>
</tr>
<tr>
<td>Tapering</td>
<td>A gradual decrease in dose at the end of treatment, as an alternative to abruptly stopping treatment</td>
</tr>
<tr>
<td>Titration</td>
<td>A technique of dosing at low levels at the beginning of treatment, and gradually increasing to full dose over a few days, to allow the body to get used to the drug. It is designed to limit side effects.</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>A variety of behavioural, affective, cognitive and physiological symptoms, usually transient, which occur after use of an addictive drug is reduced or stopped. See: Shiffman et al 'Recommendations for the assessment of tobacco craving and withdrawal in smoking cessation trials' Nicotine & Tobacco Research 2004: 6(4): 599-614</td>
</tr>
</tbody>
</table>

WHAT’S NEW

Last assessed as up-to-date: 19 May 2007.

1 August 2008 Amended Converted to new review format.
protocols for smoking cessation in hospitalised patients

HISTORY

Protocol first published: Issue 4, 1999
Review first published: Issue 2, 2001

20 May 2007 New citation required but conclusions have not changed
Updated for issue 3, 2007. Sixteen new trials added to the seventeen trials previously included. Most of the new trials tested intensive counselling interventions. Three of the new trials tested pharmacotherapy (nicotine replacement or bupropion) as an adjunct to behavioral counselling.

26 August 2002 New citation required but conclusions have not changed
Updated for issue 1, 2003. Two new trials were included, both of a moderately intensive intervention conducted during the hospital stay.

CONTRIBUTIONS OF AUTHORS

NR and MM extracted data for the 2007 update, with input from LS. NR wrote the update, with input from MM and LS. All authors were involved in the conception, data extraction and writing of the original review.

DECLARATIONS OF INTEREST

Dr Rigotti was the co-author of three studies included in the review. Dr. Rigotti’s research is funded by the U.S. National Institutes of Health, by private nonprofit foundations, and by the pharmaceutical companies that make investigational or approved smoking cessation products. Her work on this review was funded by a Midcareer Investigator Award in Patient-Oriented Research from the U.S. National Heart Lung and Blood Institute.

SOURCES OF SUPPORT

Internal sources

- Department of Primary Health Care, Oxford University, UK.
External sources

- NHS Research and Development Programme, UK.
- NIH / NHLBI Mid-career Investigator Award in Patient Oriented Research (#K24-044440), USA.

INDEX TERMS

Medical Subject Headings (MeSH)
*Hospitalization; Patient Education as Topic; Randomized Controlled Trials as Topic; Sensitivity and Specificity; Smoking [prevention & control]; Smoking Cessation [*methods]

MeSH check words
Humans