Exercise interventions for smoking cessation (Review)

Ussher MH, Taylor A, Faulkner G

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2008, Issue 4

http://www.thecochranelibrary.com

Exercise interventions for smoking cessation (Review)
Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Table of Contents

1. **Header** ... 1
2. **Abstract** ... 1
3. **Plain Language Summary** 2
4. **Background** ... 2
5. **Objectives** .. 3
6. **Methods** .. 3
7. **Results** ... 4
8. **Discussion** .. 11
9. **Authors' Conclusions** 15
10. **Acknowledgements** 15
11. **References** ... 16
12. **Characteristics of Studies** 23
13. **Data and Analyses** 35
 Analysis 1.1. Comparison 1 Exercise component versus smoking cessation programme only, Outcome 1 Smoking cessation at longest follow up ... 35
14. **What's New** .. 35
15. **History** ... 36
16. **Contributions of Authors** 36
17. **Declarations of Interest** 36
18. **Sources of Support** 36
19. **Index Terms** ... 37
Exercise interventions for smoking cessation

Michael H Ussher¹, Adrian Taylor², Guy Faulkner³

¹Division of Community Health Sciences, St George's, University of London, London, UK. ²School of Sports & Health Sciences, University of Exeter, Exeter, UK. ³Faculty of Physical Education and Health, University of Toronto, Toronto, Canada

Contact address: Michael H Ussher, Division of Community Health Sciences, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK. m.ussher@sgul.ac.uk.

Editorial group: Cochrane Tobacco Addiction Group.

Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 4, 2008.

Review content assessed as up-to-date: 5 July 2008.

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Taking regular exercise may help people give up smoking by moderating nicotine withdrawal and cravings, and by helping to manage weight gain.

Objectives

To determine whether exercise-based interventions alone or combined with a smoking cessation programme are more effective than a smoking cessation intervention alone.

Search strategy

In July 2008, we searched the Cochrane Tobacco Addiction Group Specialized Register for studies including the terms 'exercise' or 'physical activity'. We also searched MEDLINE, EMBASE, PsycINFO, Dissertation Abstracts and CINAHL.

Selection criteria

We included randomized trials which compared an exercise programme alone, or an exercise programme as an adjunct to a cessation programme, with a cessation programme, recruiting smokers or recent quitters, and with a follow up of six months or more.

Data collection and analysis

We extracted data on study characteristics and smoking outcomes. Because of differences in studies we summarized the results narratively, making no attempt at meta-analysis.

Main results

We identified 13 trials, six of which had fewer than 25 people in each treatment arm. They varied in the timing and intensity of the smoking cessation and exercise programmes. Three studies showed significantly higher abstinence rates in a physically active group versus a control group at end of treatment. One of these studies also showed a significant benefit for exercise versus control on abstinence at the three-month follow up and a benefit for exercise of borderline significance (P = 0.05) at the 12-month follow up. One study showed significantly higher abstinence rates for the exercise group versus a control group at the three-month follow up but not at the end of treatment or 12-month follow up. The other studies showed no significant effect for exercise on abstinence.
Authors’ conclusions

Only one of the 13 trials offered evidence for exercise aiding smoking cessation at a 12-month follow up. All the other trials were too small to exclude reliably an effect of intervention, or included an exercise intervention which was insufficiently intense to achieve the desired level of exercise. Trials are needed with larger sample sizes, sufficiently intense interventions, equal contact control conditions, measures of exercise adherence and change in physical activity in both exercise and comparison groups.

Plain Language Summary

Do exercise interventions help people quit smoking

Exercise is routinely recommended as an aid to smoking cessation by specialist clinics and self-help materials. Thirteen trials have compared an exercise programme plus a smoking cessation programme, or an exercise programme alone, to a cessation programme alone or a cessation programme plus a health education programme. Since these studies used different types of exercise programmes, and varied in the duration of follow up, the results were not combined. In one study with a difference in quit rates of borderline significance, the exercise component more than doubled the likelihood of not smoking after 12 months.

Background

Cigarette smoking is an important risk factor for cardiovascular disease, cancer and hypertension, and is one of the major causes of premature mortality in industrialized nations (Doll 2004; Peto 1996). Stopping smoking prolongs life and reduces morbidity (USDHHS 1990). Many attempts to stop smoking are made unaided (West 1997), with a success rate (more than 12 months continuous abstinence) of around 2 to 4% (Hughes 1992). Aided quit attempts, particularly through a combination of behavioural counselling and nicotine replacement therapy (NRT), bupropion or varenicline can improve success rates, but these remain low (Cahill 2007; Hughes 2007; Stead 2008). More effective smoking cessation interventions are needed.

Effect of exercise on tobacco withdrawal and cravings

Exercise has been proposed as an aid for smoking cessation (Hill 1981). In this review the terms exercise and physical activity (PA) are used interchangeably and refer to both ‘lifestyle’ physical activities, such as walking, as well as more formal structured activities, such as using a stationary cycle. The severity of desire to smoke reliably predicts relapse in smokers who are trying to stop (Doherty 1995; West 1989) and interventions are required which reduce desire to smoke. In experimental studies, cardiovascular-type exercise has been shown to have an acute effect on reducing both psychological withdrawal symptoms and desire to smoke in abstinent smokers. This has been shown to be the case for both brief (5 to 10 minute) bouts of moderate intensity exercise among smokers who have been abstinent overnight and for 30 to 40 minute bouts of vigorous intensity among smokers who are trying to quit smoking (Taylor 2007b). The mechanism underlying the observed beneficial effect of exercise on withdrawal and cravings is not clear. Exercise has been shown to have some similarities to smoking in its effects on stimulating the central nervous system (Russell 1983) and neurobiological processes in the brain (Dishman 2006) and consequently it has been argued that exercise may provide an alternative reinforcer to smoking (Marlatt 1985). This argument is consistent with behavioural theories of choice (Correia 1998) and animal studies have demonstrated that exercise is an effective alternative reinforcer to illicit substances for rats (e.g. Cosgrove 2002), but no studies could be identified which have investigated the role of exercise as an alternative reinforcer to smoking. It seems plausible that the attention to somatic cues during exercise presents a unique strategy for distracting smokers from the cravings and negative cognitions experienced during smoking abstinence, although the findings from one study suggest that distraction is unlikely to play a major role (Daniel 2006).

Besides the potential benefits of exercise for moderating psychological withdrawal symptoms and cravings, exercise has also been shown to reduce post-smoking cessation weight gain, for up to two years following cessation (Kawachi 1996). The weight control benefits of exercise may be of particular importance to fe-
male smokers who report taking up smoking to control weight (USDHHS 2001), and report fear of post-cessation weight gain as a motivation for continued smoking (Sorenson 1992; USDHHS 2001) and for smoking relapse (Gritz 1989). Exercise has also been shown to have a positive effect on other factors that may protect against smoking relapse, including perceived coping ability (Steptoe 1989) and self esteem (Fox 1999). In addition, being physically active has many general health benefits (DOH 2004) which have been observed for smokers who have quit (Albrecht 1998; Ni aura 1998; Shinton 1997) and for continuing smokers (Colbert 2001; Hedblad 1997; Senti 2001). Moreover, a recent review suggests that participation in regular physical activity satisfies eight of the principles characterising a tobacco harm reduction strategy (deRuiter 2006).

Associations between exercise and smoking behaviours

Evidence from a number of large cross-sectional surveys indicates that levels of PA are inversely related to smoking rates (e.g. Boutilier 2000; Boyle 2000; Hu 2002; Schuman 2000). Other evidence from cross-sectional studies suggests that this relationship may be influenced by both gender and mode of PA. For example, when only examining leisure-time PA, heavy smoking has been shown to be inversely related to PA in men but not in women (Scherder 2003). Elsewhere, participation in sport has been negatively associated with smoking in men but not in women (Helmert 1994). Additionally, some earlier studies have shown a weak relationship or no relationship between PA and smoking (Blair 1985; King 1992).

We have only found one study (Sasco 2002) which examined the relationship between smoking and exercise in pre-adolescents, and this cross-sectional study reported a positive association between engaging in PA and ‘ever smoking’. Among adolescents cross-sectional studies have consistently shown that smoking is negatively associated with participation in sport (Escobedo 1993; Peretti-Watel 2003; Rodriguez 2004; Rodriguez 2008) and with overall levels of PA (Coulson 1997; Pate 1996; Ward 2003). There is some evidence to suggest that this pattern may be different for boys versus girls and some of the evidence is contradictory. For example, a cross-sectional study of adolescents found a negative association between sporting activity and smoking for boys and heavy smoking, but not for girls or for lighter smokers (Peretti-Watel 2002). Another study observed no association between sports participation and smoking levels in males (Davis 1997), while a prospective study found that leisure-time PA was positively associated with initiating smoking for girls but not for boys (Aaron 1995). Two prospective studies found that higher levels of PA reduced the odds of starting smoking for boys and girls both during childhood (Audrain-McGovern 2003) and during adulthood (Kajala 2007). A detailed review of studies examining associations between smoking and physical activity has been published by Kaczynski 2008.

Smokers trying to quit are likely to be more receptive to an active lifestyle than smokers in general (Doherty 1998; King 1996). Smokers report that they value exercise as a strategy for reducing the risk of developing tobacco-related disease (Haddock 2004), and higher levels of exercise are associated with less depression in smokers (Vickers 2003; Williams 2008). Being physically active has been positively associated with initiating a quit attempt (Haddock 2000; deRuiter 2008), with confidence to maintain smoking abstinence (King 1996) and with success at stopping smoking (Derby 1994; Paavola 2001; Sedgwick 1988; Abrantes 2007), although one large survey found no association between exercise levels and intention to quit smoking (Nguyen 1998). Other work shows a positive trend between avoiding relapse to smoking and physical health and fitness (Metheny 1998) and a significantly reduced risk of smoking relapse among those who are more physically active (McDermot 2008).

Overall, from the above evidence one might hypothesize that pursuing regular exercise during an attempt to stop smoking could act both to reduce nicotine withdrawal symptoms and cravings and to increase rates of smoking cessation. In practice, exercise has for many years been routinely recommended as an aid to smoking cessation by specialist smoking clinics (e.g. Hutt 1992), by pharmaceutical companies (e.g. Boots 1998), in self-help guides (Ashelman 2000; Marcus 2004) and in national guidelines (e.g. Quit 1994; Woodhouse 1990; USDHHS 2008). In the short term, most smokers are unlikely to spontaneously increase their levels of PA after quitting (Allen 2004; Hall 1989; Vander Weg 2001), and the present review examines studies which have evaluated exercise interventions as an aid to smoking cessation. This updated review builds on a previous report (Uscher 2000a). We also note the results of a review which included a meta-analysis using three of the studies identified in the current review and two further studies which had an exercise-only intervention (Nishi 1998).

OBJECTIVES

The objective of the present review was to establish whether exercise-based interventions alone, or combined with a smoking cessation programme, are more effective than a smoking cessation intervention alone.

METHODS

Criteria for considering studies for this review

Types of studies

Exercise interventions for smoking cessation (Review)

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Randomized controlled trials

Types of participants
Smokers wishing to quit or recent quitters.

Types of interventions
Programmes of supervised or unsupervised exercise alone or as an adjunct to a smoking cessation intervention, compared to a smoking cessation programme alone. Interventions which included exercise in a multiple component smoking cessation programme were excluded since the specific effects of exercise on smoking abstinence could not be addressed. Multiple risk factor interventions where smoking cessation was one of a number of health-related outcomes were excluded for the same reason.

Types of outcome measures
Smoking cessation at the longest follow up reported. Trials with less than six months follow up were not included.

Search methods for identification of studies
We searched the Specialized Register of the Cochrane Tobacco Addiction Group for studies including ‘exercise’ or ‘physical activity’. We also searched MEDLINE, EMBASE, PsycINFO, Dissertation Abstracts and CINAHL, using the terms ‘smoking’, ‘smoking cessation’, ‘exercise’, ‘physical activity’ and ‘intervention’ (searches completed July 2008). We also carried out a handsearch of reference lists and conference abstracts, conducted additional searches on key authors and we contacted key authors.

Data collection and analysis
We extracted the following data from each study report: study design, recruitment and randomization method; subject characteristics including age, gender, smoking behaviour, exercise levels at entry; sample size; description of exercise and smoking cessation programmes (including number of sessions and duration); rates of exercise adherence; control conditions; length of follow up; definition of cessation; method of validation. The primary outcome was quitting at longest follow up using the strictest definition of abstinence reported in the study. Due to the small number of studies, small sample sizes and differences in study design and intervention, we did not conduct a meta-analysis. For each study the risk ratio for quitting at longest follow up and the 95% confidence interval were displayed graphically. The review has been changed from reporting odds ratio to risk ratio because the Tobacco Addiction group has altered its policy.

RESULTS

Description of studies
See: Characteristics of included studies; Characteristics of ongoing studies.
The literature search identified 13 studies which met the inclusion criteria. Full details for each study are given in Characteristics of included studies table. Four studies had more than one associated publication or abstract (Kinnunen 2008; Marcus 1999; Prapavessis 2007; Ussher 2003) and these are listed under the study identifier in the reference section. Six trials had fewer than 25 people in each treatment arm. Seven trials were limited to women (Kinnunen 2008; Marcus 1991; Marcus 1995; Marcus 1999; Marcus 2005; Prapavessis 2007; Russell 1988), and one to men (Taylor 1988).

In all but one of the studies a multi-session cognitive behavioural smoking cessation programme was provided for intervention and control conditions. In six studies this began prior to quit day (Hill 1993; Kinnunen 2008; Marcus 1999; Marcus 2005; Prapavessis 2007; Ussher 2003). In the one study with a single session cessation programme, participants were post-acute myocardial infarction (AMI) patients and the intervention was for relapse prevention (Taylor 1988). Three studies included nicotine patches as part of the smoking cessation programme (Marcus 2005; Prapavessis 2007; Ussher 2003), one study used nicotine gum (Kinnunen 2008) and one use nicotine replacement therapy of an unspecified type (Cornuz 2007).

All the 12 studies recruiting current smokers set a quit date. The exercise programme began before the quit date in nine studies (Cornuz 2007; Hill 1993; Kinnunen 2008; Marcus 1991; Marcus 1995; Marcus 1999; Marcus 2005; Prapavessis 2007; Ussher 2003) on the quit date in two (Hill 1985; Martin 1997) and after the quit date in one (Russell 1988). Two studies entailed exercise programmes lasting for less than six weeks (Hill 1985; Martin 1997). Most of the trials employed supervised, group-based exercise supplemented by a home-based programme. Three studies did not provide a home programme (Marcus 1991; Marcus 1995; Marcus 1999) and one study used only brief exercise counselling towards pursuing home-based exercise (Ussher 2003).

Excluded studies
The literature search revealed a number of trials which did not satisfy the specific inclusion criteria (see Characteristics of excluded studies table), but had exercise as an independent variable and smoking cessation behaviour as a dependent variable. These studies mainly fell into four broad categories:
(a) Multiple independent and dependent variables: A number of studies were identified in which exercise was one element in a multiple risk factor intervention, with smoking cessation behaviour as one of a number of health-related outcomes. The specific effects
of exercise on smoking cessation could not be determined due to possible interaction and confounding between the independent variables. For example, it is not possible to separate the effects on smoking cessation due to a change in diet versus a change in exercise habits.

(b) Multiple independent variables and a single dependent variable: Four studies were found which included multiple smoking cessation elements one of which was exercise. In these studies the specific effects of exercise on smoking abstinence were not addressed.

(c) Single independent variable and multiple dependent variables: In these studies exercise was encouraged without a smoking cessation programme, and changes in various health and behavioural indices including smoking cessation were examined. None of these studies found a significant effect on smoking abstinence for the active condition. However, as these studies did not record the number of smokers who were trying to stop, it is difficult to evaluate their success.

(d) Acute studies: These experimental studies assessed the acute impact of an exercise intervention on withdrawal symptoms and desire to smoke (see Additional Table 1), almost all following temporary abstinence. The findings of these studies are summarised at the end of the discussion.

Table 1. Studies on the acute effect of exercise

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Subject characteristics</th>
<th>Exercise characteristics</th>
<th>Measures</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikhail 1983</td>
<td>Within subjects. 1 hr in lab post-treatment + 23 hr post-lab. Abstinence period: 30 mins</td>
<td>18 M, inactive, low-moderate fitness. Mean age = 26 yrs. Mean time as smoker = 10 yrs. Smoked ≥1 pack/day for 3 yrs. Non-quitters</td>
<td>All 10 mins. (a) & (b) = + 4-5 min cool down) (a) cycle @ 104 bpm (66-69% max hr) (b) cycle @ 120 bpm (82-85% max hr) (c) passive (reading)</td>
<td>60 mins of surreptitious observation in lab with freedom to smoke/read. - Time to 1st puff. - Duration of 1st lit cig. & no. of puffs. - No. cigs in follow-up 60 mins + 23 hr. (adjusted for wake hrs).</td>
<td>(a) & (b) less time with 1st lit cig. cf. (c). (a) & (b) not different. No other sig. diffs.</td>
</tr>
<tr>
<td>Reeser 1983</td>
<td>Between-subjects (matched by age & sex) then randomized. Data presented from 2 lab sessions with same treatment condition. No abstinence period prescribed but mean time = 30 mins</td>
<td>25 F & 12 M, inactive. Mean age = 24 yrs. Mean CPD = 23. Mean time as smoker = 8.4 yrs. Smoked ≥1 pack/day for 2 yrs. Non-quitters</td>
<td>20 mins (a) = 3 min stretch + 13 min ex. + 2 min cool-down + 2 min stretch. (a) cycle @ 140 bpm (60% max HR) (b) stretch & isotonic (c) passive</td>
<td>30 mins of surreptitious observation in lab with freedom to smoke/read. SAI. Time to 1st cig & no. of puffs & time lit. No. who smoked. Time to 1st cig after leaving lab. (self-reported)</td>
<td>Data averaged from 2 sessions: (b)<(c) on no. of puffs (ES=0.69). (b)><c) on time to 1st cig (net diff = 24 mins) (ES=1.0)(a=14 min; b= 31 min; c=7 min). 28% in (a & b) and</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Duration</td>
<td>Participants</td>
<td>Protocol</td>
<td>Measures</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Pomerleau 1987</td>
<td>Within subjects. Follow up to 20 mins post-exercise.</td>
<td>30 mins</td>
<td>10 M, inactive healthy</td>
<td>Both 30 mins cycling</td>
<td>POMS, SWS</td>
</tr>
<tr>
<td>Thayer 1993</td>
<td>Within subjects. Follow up immediately post-exercise</td>
<td>45 mins</td>
<td>5 M & 11 F, Age = 18-44 years, Smoked 1-2 packs per day</td>
<td>5 mins of either brisk walk or inactivity</td>
<td>Short AD-ACL (energy & tension), urge to smoke, time to next cig.</td>
</tr>
<tr>
<td>Marcus 1999 (reported in Bock 1999)</td>
<td>Within (pre-post exercise/control) subjects. During smoking cessation</td>
<td>45 mins</td>
<td>Group 1 = 24 F Group 2 = 44 F Both groups inactive</td>
<td>(a) 30-40 mins 60-85% HRR, aerobic activity (group 1 & 2)</td>
<td>PANAS, ESR, & cravings.</td>
</tr>
<tr>
<td>Ussher 2001</td>
<td>Between subjects (randomly assigned)</td>
<td>Abstinence period: 15 hrs</td>
<td>78 inactive M & F, Mean CPD = 18 yrs, Mean age = 36 yrs, Mean FTND = 5.9, Mean baseline SoD = 6.4 (ranging from 6.1-6.6)</td>
<td>(a) 40-60% HRR, cycling+video; (b) video control; (c) passive control, All for 10 min + 1-2 min warm-up</td>
<td>MPSS, plus Tiffany 'desire to smoke' item</td>
</tr>
<tr>
<td>Daley 2004</td>
<td>Between subjects. Pre- (T1), post- (T2), 30 (T3) & 60 mins (T4) post-treatment.</td>
<td>Abstinence period: 15 hrs</td>
<td>16 sedentary M & F, Mean CPD = 13 yrs, Mean age = 21 yrs</td>
<td>a) 60-65% age predicted maximum HR cycling; (b) passive video on smoking cessation. Both for 30 min</td>
<td>PANAS & SWS</td>
</tr>
</tbody>
</table>
Table 1. Studies on the acute effect of exercise (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Assessments</th>
<th>Mean abstinence</th>
<th>Interventions</th>
<th>Results presented as change scores from baseline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel 2004</td>
<td>Between subjects (randomly assigned). Pre- (T1), mid- (T2), 0 (T3), 5 (T4) & 10 mins (T5) post-treatment. Abstinence period: 11-15 hrs</td>
<td>84 inactive M & F. Mean CPD = 17 Mean age = 30 yrs. Mean FTND = 4.0. Mean baseline SoD = 4.1.</td>
<td>(a) 40-60% HRR cycling; (b)10-20% HRR cycling; (c) passive control. (a) & (b) achieved target intensity prior to 2.5 mins (during warm-up) and maintained until 5 mins, then 2.5 min warm down.</td>
<td>5 MPSS items, plus desire & SoD to smoke items. Results presented as change scores from baseline. (a) reduced cf (c) for: desire (at T2 & T3); SoD to smoke (at T3 & T4); irritability & restless (at T4 & T5); tension, (at T4). (b) reduced cf (c) poor concentration (at T3). Condition differences, (a) < (c) ES = 1.16, 0.97, 0.58, 0.24 (at T2, T3, T4 & T5, respectively) for SoD.</td>
<td></td>
</tr>
<tr>
<td>Taylor 2005</td>
<td>Within subjects. Randomly ordered. Assessments at Pre (T1), mid (T2), immediately (T3), 10 mins (T4), 20 mins (T5) post-treatment. Abstinence period: >15 hrs</td>
<td>10 M & 5 F, active. Mean CPD = 17 Mean age = 26 yrs. Mean FTND = 4.0. Mean baseline SoD = 5.8</td>
<td>(a) Self-paced 1 mile treadmill brisk walk (means = 10.8 RPE; 25% HRR, 18 mins), (b) passive waiting. (a) also had 2 min warm-up and cool down.</td>
<td>MPSS, desire & SoD to smoke, 2 factor 32-item QSU. FS & FAS. POMS scales. (a) < (b) desire & SoD to smoke at T2, T3, T4, & T5 and both QSU scales at T5. Reduced tension & increased FS at T5 & increased FAS at T3. For desire to smoke, ESs=3.9, 3.7, 3.7, 3.1; & SoD ESs=5.8, 4.6, 2.8, 1.6 at T2, T3, T4 & T5, respectively.</td>
<td></td>
</tr>
<tr>
<td>Taylor 2006a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ussher 2006</td>
<td>Between subjects (randomly assigned). Assessments at Pre (T1), immediately (T2), 5 mins (T3), 10 mins (T4) 15 mins (T5), & 20 mins (T6) post-treatment. Mean abstinence</td>
<td>27 F & 33 M. Mean CPD = 19 Mean age = 32 yrs. Mean FTND = 3.9. Mean baseline SoD = 5.2</td>
<td>5 mins of: (a) seated isometric exercise; (b) body scan; (c) sitting passively</td>
<td>SoD to smoke, & MPSS items. (a) < (c) for SoD to smoke (at T2 & T3), ESs=0.27, 0.29, respectively, poor concentration (at T3, T4, & T5). No effects at T6. (b) < (a & c) on baseline scores which con-</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Studies on the acute effect of exercise (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Mean abstinence period</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everson 2006</td>
<td>Between subjects (stratified, by gender, randomly assigned)</td>
<td>17.2 hrs</td>
<td>Mean age = 17.7 yrs, Mean CPD = 13.6 Non-quitters, Mean dependence = 7.2 (on 0-10 scale of HONC), SoD = 3.4 (estimated from original 0-5 scale), Both 10 mins cycle (a) (RPE = 12.3, HR=112 bpm, 55% age-predicted HR max), (b) (RPE = 8.3, HR=89 bpm, 44% age-predicted HR max).</td>
<td>SoD to smoke, MPSS, SEES-PWB, SEES-PD, SEES-fatigue.</td>
</tr>
<tr>
<td>Daniel 2006</td>
<td>Between subjects (random assigned)</td>
<td>13.6 hrs</td>
<td>Mean age = 23.4 yrs, Mean CPD = 14. Non-quitters, Mean FTND = 3.0 Mean baseline SoD = 4.0 (a) 10 mins cycle (40-60% HRR). (b) Passive (Cognitive distraction task)</td>
<td>SoD to smoke, MPSS, PANAS (a) < (b) during and after treatment for desire & SoD, difficulty concentrating and stress. ES (a) v (b) for cravings = 2.0 & 1.0 during and post treatment, for both desire and SoD to smoke. (a) < (b) during treatment for 5 other MPSS items but due to increase during cognitive distraction task rather than reduction during exercise.</td>
</tr>
<tr>
<td>Katomeri 2006a</td>
<td>Within subjects. Randomly ordered. Pre-, Mid- & post-exercise + pre- & post-smoking cue. Ad libitum smoking.</td>
<td>2 hrs</td>
<td>Mean age = 21.9 yrs Mean CPD = 13.7. Non-quitters, Mean FTND= 3.5, Mean baseline SoD = 5.2 (a) 15 mins self-paced treadmill brisk walk (means = RPE - 12.2, HRR - 37.3%). (b) passive waiting.</td>
<td>Desire & SoD to smoke. MPSS, FS & FAS. 2 factor 10-item QSU. Time to next cig. after leaving lab. (from phone text) (a) < (b) Both desire & SoD to smoke measures, both QSU scores & 7 MPSS scores during & post-treatment (ES for desire and SoD ranged from 1.5 to 3.1; mean = 2.3). (a) > (b) for change in desire to smoke in response to lit cig. cue.</td>
</tr>
<tr>
<td>Katomeri 2006b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Studies on the acute effect of exercise
(Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Participants</th>
<th>Procedure</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor 2007</td>
<td>Between subjects (randomly assigned)</td>
<td>34 F & 26 M, moderately active</td>
<td>15 mins self-paced treadmill brisk walk</td>
<td>(a) < (b) for Desire & SoD & 7 MPSS items, at all assessments from mid-ex to post lit cig. ES for desire ranged from 1.04-1.78 with mean = 1.62. ES for SoD ranged from 1.2-2.07 with mean = 1.45. (a) attenuated responses to lit cig. cue for SoD to smoke (ES = 0.61), tension, stress, poor concentration & SBP. (b) also attenuated SBP & DBP responses to Stroop & speech tasks, and restlessness to Stroop. (a) > (b) for time to next cig (84 v 27 min) (ES=1.20)</td>
<td></td>
</tr>
<tr>
<td>Taylor 2006b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniel 2007</td>
<td>Between subjects (randomly assigned)</td>
<td>22 M & 23 F</td>
<td>10 M & 23 F; sedentary</td>
<td>All groups reduced SoD & MPSS items from pre- to during & post exercise (ES = 0.4-0.9)(except restlessness & poor concentration during exercise). No difference between groups.</td>
<td></td>
</tr>
<tr>
<td>Scerbo 2008</td>
<td>Within subjects (randomly assigned order)</td>
<td>10 M & 8 F</td>
<td>15 mins.</td>
<td>(a) & (b) < (c) for SoD at T2 & T3, and only (b) < (c) at T4. (a) & (b) < (c) for desire at T2, T3</td>
<td></td>
</tr>
</tbody>
</table>

Desire & SoD to smoke. MPSS, Time to next cig. after leaving lab. (from phone text). SBP/DBP & HR.
Table 1. Studies on the acute effect of exercise
(Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Exercise</th>
<th>Conditions</th>
<th>Baseline</th>
<th>Post-treatment</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janse van Rensburg 2007</td>
<td>Running</td>
<td>6 M & 6 F</td>
<td>SoD = 6</td>
<td>5.5</td>
<td>(a) > (b) & T4 and only (b) < (c) at T5. By 30 mins, no differences in cravings between (a), (b) & (c).</td>
</tr>
<tr>
<td>Janse van Rensburg 2008a</td>
<td>Cycling</td>
<td>13 M & 3 F</td>
<td>SoD = 6</td>
<td>5.5</td>
<td>(a) < (b) at T2 & T3 (ES = 1.08) mins post-treatment only.</td>
</tr>
<tr>
<td>Janse van Rensburg 2008b</td>
<td>Cycling</td>
<td>25 M & 20 F</td>
<td>SoD = 6</td>
<td>5.5</td>
<td>(a) < (b) Desire to smoke at T2, T3, T4 (ES = 1.46, 1.20 and 0.93, respectively). (a) < (b) for both QSU measures at T3, T4 & T5 (ES for Factor 1 = 1.96, 2.04 and 1.39, & Factor 2 = 1.47, 1.22 and 0.98, respectively).</td>
</tr>
<tr>
<td>Everson 2008a</td>
<td>Cycling</td>
<td>25 M & 20 F</td>
<td>SoD = 6</td>
<td>5.5</td>
<td>(a) < (b) Desire to smoke at T2, T3 & T4 (Eta² ES = 0.64, 0.65, 0.29, respectively).</td>
</tr>
</tbody>
</table>

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
AD-ACL: Activation-Deactivation-Adjective Check List; CPD: cigarettes per day; DBP Diastolic blood pressure; ES: effect size; ESR: Evening Symptom Report; F: female; FAS: Felt Arousal Scale; IMRI = functional magnetic resonance imagery (of the brain); FS: Feelings Scale; FTND: Fagerstrom Test for Nicotine Dependence; HONC: Hooked on Nicotine Checklist; HR: heart rate; HRR: heart rate reserve; M: male; MPSS: Mood & Physical Symptoms Scale; PANAS: Positive & Negative Affect Scale; POMS: Profile of Mood States; QSU: Questionnaire on Smoking Urges [Factor 1: anticipation of smoking as pleasant, enjoyable and satisfying, and Factor 2: reduced anticipation of relief from negative affect by smoking] 10-item QSU; RPE: Rating of Perceived Exertion; SAI: State Anxiety Inventory; SBP: systolic blood pressure; SEES: Subjective Exercise Experiences Scale (PWB = positive well-being, PD = psychological distress); SoD: Strength of Desire to smoke; SWS: Shiffman Withdrawal Scale; * Data not available for ES calculation.

Risk of bias in included studies

Only five studies described the randomization method in detail (Cornuz 2007; Marcus 1999; Marcus 2005; Prapavessis 2007; Ussher 2003). The strictest measure of abstinence was continuous in five studies, prolonged abstinence in one, point prevalence in five, and not specified in two.

Post-randomization dropouts were excluded from the denominator in three studies (Hill 1993; Kinnunen 2008; Taylor 1988).

Effects of interventions

We defined the efficacy of the intervention in terms of the risk ratio (RR) for quitting in the treatment group versus the controls. Three studies showed significantly higher abstinence rates in a physically active group versus a control group at end of treatment (Marcus 1991; Marcus 1999, Martin 1997). One of these studies also showed a benefit for exercise control on abstinence at the three-month follow up and a benefit for exercise of borderline significance at the 12-month follow-up point (Marcus 1999). The latter study showed a difference in abstinence rates for the exercise condition compared with the control of 11.9% versus 5.4% (P = 0.05, RR 2.19, 95% confidence interval (CI), 0.97 to 4.96) at the 12-month follow up. One study showed significantly higher abstinence rates for the exercise group versus a control group at the three-month follow up but not at the end of treatment or 12-month follow up (Marcus 2005). The latter study also found that those with higher levels of exercise adherence were more likely to achieve smoking abstinence at the end of treatment. The other studies showed no significant effect for exercise on abstinence. Several of the studies showed a trend for higher rates of abstinence in the exercise condition compared with the controls (Hill 1985; Kinnunen 2008; Marcus 1995; Prapavessis 2007; Ussher 2003).

Only five studies had a sufficiently large sample size to have a good prospect of detecting a significant difference between the treatment and control conditions (Cornuz 2007; Marcus 1999; Marcus 2005; Martin 1997; Ussher 2003). One of the studies did not provide separate abstinence data for the experimental and control groups, although it was reported that no significant difference was found between the groups (Russell 1988).

In addition to comparing the exercise condition with a control group, four of the studies examined the effectiveness of exercise versus nicotine replacement therapy (NRT) (Hill 1993; Kinnunen 2008; Martin 1997; Prapavessis 2007). In one study at end of treatment and at 12-month follow up abstinence rates were significantly higher in the exercise-plus-patch group than in the exercise-only group (Prapavessis 2007). The other studies observed no significant differences.

DISCUSSION

In one study the effect of the treatment may have been compromised by the smoking cessation programme being limited to a single counselling session (Taylor 1988). This study differed from the others in that the interventions were not intended to initiate smoking abstinence but rather to maintain abstinence in smok-
ers following acute myocardial infarction (AMI). Thus the results, which did not show any benefit for exercise, cannot easily be generalized beyond abstaining post-AMI smokers. This trial also compared the combined effect on smoking abstinence of four different exercise interventions with the combined effect of two different control interventions; therefore it was not possible to relate outcomes for smoking cessation to specific interventions. This study is further limited by providing smoking cessation counselling for only one of the two control conditions.

The results of one of the studies, showing a positive effect for exercise on smoking abstinence, at end of treatment, may have been confounded by the exercise group receiving a different cessation programme than the control group (Marcus 1997). In four of the studies the exercise condition received more staff contact time than the control (Hill 1985; Marcus 1991; Martin 1997; Taylor 1988), leading to the question of whether the outcomes for abstinence were due to exercise alone or due to additional social support.

It has been recommended that a smoking cessation programme should start before the quit date and continue into the period of abstinence (Raw 1998). Yet only seven of the trials did this (Cornuz 2007; Hill 1993; Kinnunen 2008; Marcus 1999; Marcus 2005; Prapavessis 2007; Usher 2003). With the provision of more extensive cessation programmes the impact of the interventions may have been more pronounced. Furthermore, only one of the studies (Usher 2003) described an intervention in which the smoking cessation and exercise components were integrated in such a way as to reinforce exercise as a coping strategy for smoking cessation (Marlatt 1985). For example, the potential for exercise to be used to reduce cigarette cravings and withdrawal symptoms (Taylor 2007b) could have been made more explicit.

Demographic factors, such as age, gender, weight, fitness level, socio-economic status and occupation could influence outcomes for both smoking cessation (Jarvis 1997) and exercise behaviour (Caspersen 1994; Pate 1995). Of the four trials which recruited men and women, two compared outcomes by gender (Hill 1993; Usher 2003), although no differences were reported. None of the studies considered outcomes relative to occupation, socio-economic status or age. It is possible that the relationship between demographic variables and outcomes was not explored in some of the studies because of small sample sizes. All but three of the studies were North American, with only five studies recording ethnic status, and reporting a predominantly white sample (Kinnunen 2008; Marcus 1999; Marcus 2005; Martin 1997; Usher 2003).

Researchers must consider whether these results can be generalized to other national and ethnic populations (Caspersen 1994; King 1997; Mackay 1996). In addition, given the high prevalence of smoking among people with mental illness, research is needed to examine the role that physical activity may play as an aid to quitting and whether there would be interest among such mental health service users (Faulkner 2007).

Three of the studies did not present the participants’ level of exercise at baseline (Hill 1985; Russell 1988; Taylor 1988). All the remaining studies reported that they had recruited fairly sedentary smokers. A substantial proportion of smokers may be physically active (Emmons 1994; Prochaska 1992; Ward 2003; deRuijter 2008) and it is not clear whether exercise interventions are effective as an aid to smoking cessation for this population.

A number of the trials reported a significant increase in fitness levels at the end of the treatment period within the active exercise condition (Marcus 1991; Marcus 1995; Marcus 1999 (see also Albrecht 1998); Marcus 2005; Prapavessis 2007). Three studies showed an increase in fitness for the intervention conditions compared with the controls at end of treatment (Marcus 1999; Prapavessis 2007; Taylor 1988); others showed no differences at end of treatment or at a four-month follow up (Kinnunen 2008; Russell 1988) or at 12-month follow up (Prapavessis 2007). Fitness measures are useful as a confirmation of exercise adherence. However, the significance of changes in fitness in the context of smoking cessation is debatable. Since exercise has been shown to benefit psychological and general health without increases in fitness (Taylor 2008; Pate 1995) it is possible that exercise could aid smoking cessation independently of any changes in physical capacity.

Weight gain

One trial reported a significantly smaller weight gain for those in the exercise condition compared with the controls at the end of treatment (Marcus 1999). However, in this study those in the exercise condition by chance weighed more than the controls at baseline, which makes interpretation of the finding problematic. Prapavessis 2007 observed no difference in weight gain at end of treatment when comparing cognitive-behavioural support plus nicotine patches with exercise plus nicotine patches. However, Prapavessis showed that at end of treatment those in the exercise only condition gained significantly less weight than those receiving only cognitive-behavioural support. Other studies found no difference in weight gain for the exercise versus controls at end of treatment (Marcus 2005; Usher 2003) or at 12 months post-cessation (Cornuz 2007; Usher 2003). However, these latter studies included nicotine replacement therapy (NRT) and post-cessation weight gain is likely to be less pronounced when using NRT (Jorenby 1996). Therefore, the potential for exercise to moderate weight gain was reduced.

Nicotine replacement therapy

Prapavessis 2007 provides some indication that combining nicotine patches and exercise enhances abstinence compared with exercise alone, as would be expected given the established efficacy of NRT (Stead 2008). Future studies need to establish whether exercise offers additional benefits to those provided by NRT alone. It is feasible that exercise could address psychosocial and physical...
needs that are not currently met by NRT-based programmes. Future work also needs to consider whether exercise is effective as an alternative to NRT for populations in which NRT is contraindicated or not widely used; for example, pregnant smokers have expressed a high level of interest in exercise as an aid to smoking cessation (Ussher 2004; Ussher 2007; Ussher 2008).

Aspects of Exercise Programming

For those beginning exercise either on or after the quit date (Hill 1985; Martin 1997; Russell 1988) success rates may have been hampered by the demand to cope simultaneously with two major changes in health behaviour (Emmons 1994; King 1996; Patten 2001). Furthermore, where the exercise programme started after a period of smoking abstinence the potential for exercise to moderate withdrawal symptoms during this period was lost (Taylor 2007b). In the two studies with exercise programmes lasting for less than six weeks (Hill 1985; Martin 1997) the intervention may have been of insufficient length to encourage long-term exercise adherence. Most of the trials employed supervised, group-based exercise supplemented by a home-based programme. Where home programmes were not provided (Marcus 1991; Marcus 1995; Marcus 1999) it is possible that the participants’ high level of dependence on supervised exercise may have reduced their level of post-intervention activity.

Those adequately powered trials not showing a consistent effect of exercise on smoking abstinence (Cornuz 2007; Marcus 2005; Ussher 2003) had less intensive interventions than the other studies, in that they promoted moderate intensity rather than vigorous intensity exercise. In one case they relied solely on fairly brief exercise counselling (Ussher 2003), and in the other studies supervised exercise was only provided once per week (Cornuz 2007; Marcus 2005). In these studies the exercise intervention may have been insufficiently intense to benefit smoking abstinence. Further studies are required to establish the optimum intensity of exercise intervention required as an aid to smoking cessation. Intensity here refers to the intervention effort rather than the exercise intensity per se. The findings from Marcus 2005 suggest that abstaining smokers may need to accumulate at least 110 minutes of activity per week to maintain abstinence (at least during the intervention period), and supervised exercise on two or three days a week may be necessary to achieve this.

Only two of the studies provided any post-intervention exercise programming (Hill 1993; Ussher 2003), and this may have reduced post-intervention exercise adherence (King 1989). However, it is not possible to draw any conclusions about whether various aspects of the intervention affected levels of exercise adherence after the formal supervised programme ended because none of the studies reported rates of adherence for this period.

During the treatment period a range of behavioural methods were employed to improve adherence to the exercise programme. All but two of the studies (Kinnunen 2008; Ussher 2003) used group activities with full supervision of facility-based exercise and goal setting; five used self monitoring (Hill 1985; Kinnunen 2008; Martin 1997; Russell 1988; Taylor 1988); one used reinforcement (Martin 1997); one used telephone follow up in the case of non-attendance (Hill 1993); and one used remote monitoring of heart rate (Taylor 1988). One study employed exercise counselling, including a broad range of cognitive-behavioural techniques (Ussher 2003). All the studies reported activity levels for the treatment group during the treatment period with the exception of one study (Hill 1993). Where supervised exercise was offered attendance at these sessions was high. Where the emphasis was on home-based exercise (Cornuz 2007; Marcus 2005; Ussher 2003) only a minority of the participants achieved the criterion level of exercise. For example, in one study combining home-based exercise with one supervised session of exercise per week, 50% of those in the exercise group were still classed as sedentary at the end of treatment (Cornuz 2007). One study reported greater attrition for the exercise group compared with the controls (Marcus 1999 - see Borrelli 2002). Another study reported lower attendance for the exercise intervention compared with the health education programme (Kinnunen 2008). Future studies need to consider other methods for increasing ‘home-based’ physical activity. For example, a recent study successfully used pedometers to increase participation in a walking-based intervention during smoking cessation (Prochaska 2008).

Although many of the studies reported fitness measures for the control group during the treatment period (Hill 1985; Kinnunen 2008; Marcus 1991; Marcus 1995; Marcus 1999; Prapavessis 2007; Russell 1988; Taylor 1988) only four of the investigations reported physical activity (PA) levels for the controls at this time (Cornuz 2007; Hill 1985; Kinnunen 2008; Ussher 2003). Therefore in the vast majority of the studies the relative increase in PA in the treatment group versus any spontaneous increase in activity in the control group could not be accurately monitored. During the follow-up period none of the studies used behavioural techniques to encourage regular exercise. Only two of the studies recorded fitness measures at this time (Prapavessis 2007; Russell 1988) and only two studies reported levels of activity at 12-month follow up (Cornuz 2007; Ussher 2003). Therefore for the vast majority of studies it was not possible to relate long-term abstinence from smoking to exercise behaviour.

Psychological measures

The majority of the studies used psychological measures at baseline, but only seven trials reported changes in these measures (Kinnunen 2008; Marcus 1999; Marcus 2005; Martin 1997; Prapavessis 2007; Russell 1988; Ussher 2003). Russell 1988 found a significant increase in Profile of Mood States (POMs) tension-
anxiety scores for the active group compared with the controls at four months follow up. These findings are not consistent with the general consensus that exercise reduces mood disturbance, stress and anxiety (Taylor 2000; Taylor 2008). The reported effect on psychological outcomes may have been caused by extraneous variables which could not be controlled for with such a small sample size. Martin 1997 found no significant treatment differences on mood (POMs) or depression (Beck Depression Inventory) when comparing measures taken at baseline and seven days post-quit, although these findings may have been influenced by the sample including a large number of individuals with a history of major depression. Prapavessis 2007 showed that reports of self efficacy for stopping smoking were higher in a cognitive-behavioural support condition compared with an exercise-only condition. Marcus 1999 did not find a significant change in reports of tobacco withdrawal symptoms and cigarette cravings for exercise versus controls across the treatment period. Kinnunen 2008 did not find any difference in reports of withdrawal symptoms for the exercise group versus the controls at one week post-cessation. Cornuz 2007 found no significant differences in reports of withdrawal symptoms, depression, urges to smoke or perceived stress for the exercise group versus the control group. Marcus 2005 observed that, among 40 women who were abstinent at the end of treatment, those who increased their fitness were more likely to report decreases in depressive symptoms (Williams 2008). Usher 2003 observed a reduction in some withdrawal symptoms for exercise versus controls up to three weeks post-cessation. None of the above studies looked in detail at the effect of exercise on sleep disturbance, and this may be a worthwhile objective. For example, Grove 2006 observed that, compared with controls, regular participation in exercise did not affect the ability to stay asleep but exercisers reported significantly less difficulty falling asleep. It would also be valuable if affective changes after exercise were assessed among different subgroups of smokers. For example, a recent study observed that, among women smokers with increased concern about weight gain, engagement in exercise was associated with less of an increase in negative affect following smoking cessation (Schneider 2007).

Acute effect of exercise on tobacco withdrawal and cravings

Of the included studies, only Marcus 1999 assessed the acute effects of each bout of exercise, reporting a significant reduction in tobacco withdrawal symptoms and cigarette cravings for the vast majority of the bouts throughout the intervention (Bock 1999). Twenty experimental studies have shown significant benefits of a single bout of exercise on cigarette cravings and withdrawal symptoms, almost exclusively among temporaroly abstinent smokers (Taylor 2007b). We therefore recommend that future exercise and smoking cessation studies should include measures of both the acute and chronic effects on tobacco withdrawal and cravings. The 20 experimental studies are presented in Additional Table 1 and are summarised here. These studies showed that, compared with a passive condition, after periods of up to 17 hours without smoking, smokers have lower cravings, withdrawal symptoms and negative affect during and for up to 30 minutes post-exercise (see Table 1). The effects are evident for moderate and vigorous intensity exercise, and for durations from 5 minutes of seated isometric exercise to 20 to 30 minutes of moderate intensity aerobic activity. Encouragingly, relatively convenient forms of physical activity (e.g., 10 to 15 minutes of brisk walking) can be just as effective as longer bouts. Several mechanisms have been tested among these studies for how exercise reduces cravings. Distraction (Daniel 2006) and expectancy (Daniel 2007) do not appear to explain the effects. Cortisol remained constant in a vigorous exercise condition, compared with declines in moderate and passive conditions, despite similar and significant reductions in cravings in both physically active conditions (Scherbo 2008). This suggests that cortisol changes do not mediate any effects of exercise on cravings. Taylor 2006a reported that reductions in urges to smoke in response to exercise were mediated by reductions in tension. One study involving functional Magnetic Resonance Imagery (fMRI) scanning suggested that parts of the brain that are typically activated by smoking cues (images) were less activated (Janse van Rensburg 2007; Janse van Rensburg 2008b) following moderate intensity exercise. Finally, one study reported that after exercise, compared with rest, abstinent smokers had less attentional bias (gaze or dwell time, measured using eye-tracker technology) towards smoking images, compared with simultaneously presented (alongside) matched neutral images. Further work is needed to understand how different types of activity (e.g., brief bouts of seated exercise, walking) influence symptoms known to cause relapse among actual quitters. Also, given this experimental evidence further research is needed to understand how best to promote the use of physical activity as a momentary aid to smoking cessation, in contrast to longer scheduled bouts of vigorous structured or facility-based exercise. Four studies (Reeser 1983; Thayer 1993; Katomeri 2006b; Taylor 2007) reported that a bout of moderate intensity exercise delayed ad libitum smoking, and further work is needed to assess whether a physical activity intervention would help as a smoking reduction strategy.

Overall commentary

A comparison of the studies was complicated by differences in study design and intervention, and by the relative paucity of research in this field. There were marked variations between the studies in the length, type and timing of the exercise intervention, in the design of the control condition and cessation programme, and in the demographic factors recorded. In addition, there was a general absence of data relating to the physical activity levels of the control groups, and of either group during the follow-up period. Together, these factors restricted meaningful comparison of results between studies. The findings presented in this review
have implications for future research in this field. One of the first requirements for future work must be to have trials with larger sample sizes.

It is possible that a greater integration between the smoking cessation and exercise programmes may have enhanced abstinence rates. In future research exercise could be presented more as a self-control strategy as well as a means of increasing fitness and general health and of managing body weight (Marlatt 1985). For example, in initiating abstinence, exercise could be presented as a strategy for managing withdrawal symptoms and overcoming physical dependency (Taylor 2007b). As regards relapse prevention, exercise could be presented as a strategy which increases self esteem and pride in one’s health, and reinforces an identity as a non-smoker in such a way that being a smoker is incompatible with these perceptions (Fox 1998).

At what point should the smoker who is trying to quit begin an exercise programme? In the studies reviewed there was wide variation in the timing of the exercise programme. Some recommendations for changes in exercise and smoking behaviour are for sequential rather than simultaneous changes but this is likely to be specific to the individual’s needs (Emmons 1994; King 1996; McEwen 2006; Everson 2008b). Another study showed a tendency for higher quit rates among those trying to quit smoking and increase exercise simultaneously rather than sequentially (Hyman 2007). It has been argued that a physical activity programme should begin prior to quitting, thereby allowing people to adjust to the demands of being more active before significantly changing their smoking behaviour (Marcus 1995). Elsewhere, it has been shown that abstaining smokers are more confident about adopting exercise than those preparing to quit (King 1996), which would support the notion of beginning an exercise programme when already abstinent, although delaying the start of the programme would reduce the potential for managing withdrawal symptoms (Taylor 2007b).

A quasi-experimental study has reported higher adherence rates for smokers who undergo an exercise regimen commencing eight weeks before the quit day compared with those starting exercise on the quit day (Patten 2001). Further empirical work is required in order to ascertain the relative benefits of initiating exercise at different points in the cessation schedule. Only one study with balanced contact time showed a long-term effect of exercise on smoking cessation (Marcus 1999). This study combined a vigorous intensity, thrice weekly supervised exercise programme with cognitive-behavioural support. It has yet to be determined whether a less intensive exercise intervention can aid smoking cessation. Finally, there is no evidence of harm in promoting physical activity to smokers. That is, no studies report reduced smoking cessation rates in an exercise group compared with control conditions.

AUTHORS’ CONCLUSIONS

Implications for practice

Only one of the 13 trials reviewed offered evidence for exercise aiding smoking cessation in the long term. The trials which did not show a significant effect of exercise on smoking abstinence were either too small to exclude reliably an effect of the intervention, had numerous methodological limitations or included an intervention which was not intense enough to produce the required changes in exercise levels. There is insufficient evidence to recommend exercise as a specific aid to smoking cessation. There is strong evidence to recommend exercise as an aid for reducing tobacco withdrawal and cravings, and further research is needed to understand how best to integrate this advice into current smoking cessation programmes.

Implications for research

Further trials are needed with larger sample sizes, sufficiently intense exercise interventions, equal contact control conditions, and measures of exercise adherence across the sample. Further work is needed to unravel the relationship between different intensities and timings of exercise intervention, and the effect on smoking abstinence and on underlying processes such as tobacco withdrawal and cravings.

ACKNOWLEDGEMENTS

We would like to acknowledge Robert West and Andy McEwen who contributed to earlier versions of this review.
References to studies included in this review

Cornuz 2007 {published data only}

Hill 1985 {published data only}

Hill 1993 {published data only}

Kinnunen 2008 {published data only}

Marcus 1991 {published data only}

Marcus 1995 {published data only}

Marcus 1999 {published data only}

Marcus 2005 {published data only}

Martin 1997 {published data only}

Prapavessis 2005 {published data only}

Russell 1988 {published data only}

Taylor 1998 {published data only}

Uscher 2003 {published data only}

References to studies excluded from this review

Caliani 2004 {published data only}
Caliani SE, Navas JCB, Gomez-Doblas JJ, Rivera RC, Jimenez BG, Lao MM, et al. Postmyocardial infarction cardiac rehabilitation in low risk patients. Results with a coordinated program of...

McIver 2004 [published data only]

Mikhail 1983 [published data only]

Oenema 2008 [published data only]

Ortega Sanchez-P 2006 [published data only]

Pomerleau 1987 [published data only]

Prochaska 2008 [published data only]

Ramsay 2004 [published data only]

Reeser 1983 [published data only]

Scerbo 2008 [unpublished data only]

Spring 2004 [published data only]

Taylor 2005 [published data only]

Taylor 2006a [published data only]

Taylor 2006b [published data only]
Taylor AH, Katomeri M. Effects of a brisk walk on blood pressure responses to the Stroop, a speech task and a smoking cue among temporarily abstinent smokers. Psychopharmacology 2006;184:247–53.

Taylor 2007 [published data only]

Thayer 1993 [published data only]

Ussher 2001 [published data only]

Ussher 2006 [published data only]

Ussher 2008 [published data only]

Vickers 2005 [published data only]

Whiteley 2007 [published data only]

Zwick 2006 [published data only]
Zwick RH, Mutzbacher P, Dovjak N, Heinze C, Burghuber OC, Zwick H. Exercise in addition to nicotine replacement therapy improves success rates in smoking cessation.. Chest 2006;130:145s.

References to ongoing studies

Bock 2007 [published data only]

Ussher 2008b [published data only]
A pragmatic randomized controlled trial of physical activity as an aid to smoking cessation during pregnancy. Ongoing study 2008.

Additional references

Aaron 1995
Aaron DJ, Dearwater SR, Anderson R, Olsen T, Kriska AM, Laporte RE. Physical activity and the initiation of high-risk health

Abrantes 2007

Albrecht 1998

Allen 2004

Ashelman 2000

Audrain-McGovern 2003

Blair 1985

Bock 1999

Boots 1998

Borrelli 2002

Boutelle 2000

Boyle 2000

Cahill 2007

Caspersen 1994

Colbert 2001

Correa 1998

Cosgrove 2002

Coulson 1997

Davis 1997

Derby 1994

deRuiter 2006

deRuiter 2008

Dishman 2006

DOH 2004

Doherty 1995

Doherty 1998
Doherty SC, Steplean A, Rink E, Kendrink T, Hilton S. Readiness to change health behaviours among patients at high risk of...

Doll 2004

Emmons 1994

Escobedo 1993

Everson 2008b

Faulkner 2007

Fox 1998

Fox 1999

Gritz 1989

Haddock 2000

Haddock 2004

Hall 1989

Hedblad 1997

Helmert 1994

Hill 1981

Hu 2002

Hughes 1992

Hughes 2007

Hyman 2007

Jarvis 1997

Jorenby 1996

Kaczynski 2008

Kawachi 1996

King 1989

King 1992

King 1996

King 1997

Kujala 2007

Mackay 1996

Marcus 2004

Marlatt 1985

McDermot 2008
McDermot L, Dobson A, Owen N. Determinants of continuity and change over 10 years in young women's smoking. Addiction 2008;in press.

McEwen 2006

Metheny 1998

Nguyen 1998

Niaura 1998

Nishi 1998

Paavola 2001

Pate 1995

Pate 1996

Patten 2001

Peretti-Watel 2003

Peretti-Watel 2002

Peto 1996

Prochaska 1992

Quit 1994

Raw 1998

Rodriguez 2004

Rodriguez 2008

Russell 1983

Sasco 2002

Schneider 2007
Exercise interventions for smoking cessation (Review)

Schroder 2003

Schuman 2001

Sedgwick 1988

Sentí 2001

Shinton 1997

Sørensen 1992

Stead 2008

Stephane 1989

Takemura 2000

Taylor 2000

Taylor 2007b

Taylor 2008

USDHHS 1990

USDHHS 2001

USDHHS 2008

Ussher 2004

Ussher 2007

Vander Weg 2001

Vickers 2003

Ward 2003

West 1989

West 1997

Williams 2008

Woodhouse 1990
References to other published versions of this review

Ussher 2000a

Ussher 2000b

Ussher 2002

Ussher 2005

* Indicates the major publication for the study
CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Cornuz 2007

| Methods | Country: Switzerland
| | Randomization: computer generated |
| Participants | 481, mean age 42, mean cpd 27, sedentary: < 150 mins moderate intensity physical activity per week and <60 mins vigorous intensity activity |
| Interventions | (a) Intervention: moderate-intensity group-based CV activity, 45 mins, weekly for 9 weeks + 15 mins CP for 9 weeks (including NRT prescription)
| | (b) Control: 9 weeks of 15 mins per week CP (including NRT prescription) + Health Education for equal time as exercise intervention (not exercise)
| | Exercise started 5 weeks before quit date |
| Outcomes | Continuous abstinence
| | Validation: CO <10ppm
| | Follow up: 5 weeks, 5 mths & 47 weeks after quit date |
| Notes | Contact time balanced between a and b
| | Data from published abstract, confirmed by authors |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Hill 1985

| Methods | Country: Canada
| | Randomization: method not stated |
| Participants | 26 women, 10 men, mean age 40, mean cpd 32 |
| Interventions | (a) Intervention: CV activity: various, group, facility, 30 mins, twice weekly for 5 weeks + home activity + CP twice weekly for 5 weeks
| | (b) Control, CP alone
| | Exercise began on quit date |
| Outcomes | 7 day PP abstinence
| | Validation: CO
| | Follow up: 1, 3, 6 months |
| Notes | Contact time not balanced |
Hill 1985 (Continued)

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Hill 1993

Methods
- Country: USA
- Recruitment: community volunteers, smoking at least 30 yrs, not currently walking for exercise
- Randomization: in blocks of 8 to 12, method not described

Participants
- 43 women, 39 men, mean age 59, mean cpd 28, irregular walkers.
 (excludes 4 treatment drop-outs and 8 non-attenders)

Interventions
- (a) Intervention 1: Walk: group/individual, facility/home, 15-35 min, 60-70% HR reserve, 1-3 times/week for 12 weeks
- (b) Intervention 2: as (a) + CP 1-4 times/week for 12 weeks
- (c) Intervention 3: CP as (b) + nicotine gum.
- (d) Control: CP alone
- Exercise began before quit date

Outcomes
- 5-day PP abstinence,
 Validation: CO <10ppm
 Follow up: 1, 4, 9 months

Notes
- (b) compared to (d) for effect of exercise programme

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Kinnunen 2008

Methods
- Country: USA
- Randomization: Method not stated

Participants
- 182 women, mean age 39, mean cpd 19, exercise < 3 times a week

Interventions
- (a) Intervention 1: CV equipment, individual, facility, 40 min, 60-80% HR max (twice a week for 5 weeks, then once per week for 14 weeks) + CP (once a week for 19 weeks) + nicotine gum
- (b) Intervention 2: CP and nicotine gum as (a) + health education for same number of sessions as for exercise in (a)
- (c) Control: CP and nicotine gum as (a)
Outcomes
Prolonged abstinence
Validation: CO, cotinine
Follow-up: 1 week, 1, 4, 12 months

Notes
Not an intention to treat analysis as 263 women were randomized, but only those considered to have made a quit attempt (N=182) were included in the analysis.
Contact time balanced between (a) and (b)

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B Unclear</td>
</tr>
</tbody>
</table>

Marcus 1991

Methods
Country: USA
Randomization: method not stated

Participants
20 women, mean age 39, mean cpd 28, exercise < once a week.

Interventions
(a) CV equipment: group, facility 30-45 min, 70-85% HR max, 3 times/week for 15 weeks + CP (twice a week for 4 weeks).
(b) CP only (twice a week for 4 weeks)
Exercise began before quit date

Outcomes
7-day PP abstinence
Validation: saliva cotinine <10ng/ml.
Follow up: 1, 3, 12 months

Notes
Contact time not balanced

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Marcus 1995

Methods
Country: USA
Randomization: method not stated

Participants
20 women, mean age 38, mean cpd 23, exercise less than once a week.

Interventions
(a) CV equipment: group, facility, 30-40 min, 60-85% HR reserve, (3 times/week for 15 weeks) + CP (once a week for 12 weeks).
| **Outcomes** | 7 day PPA
| Validation: saliva cotinine <10ng/ml.
| Follow-up: 1, 3, 12 months |
Notes	Contact time balanced between a and b	
Risk of bias		
Item	**Authors' judgement**	**Description**
Allocation concealment?	Unclear	B - Unclear
Marcus 2005

Continued

Interventions

(a) Intervention: CV various: group/individual, home/facility, 45 min, 45-59% HR reserve, (facility: once/week for 8 weeks, goal: 165 min/week) + CP (once a week for 8 weeks).

(b) Control: CP as (a) once/week for 8 weeks + health education once/week for 8 weeks

Exercise began before quit date

Outcomes

Continuous abstinence,
Validation: saliva cotinine < 10ng/ml, CO < 8ppm.
Follow up: 3, 12 months

Notes

Contact time balanced between a and b

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A- Adequate</td>
</tr>
</tbody>
</table>

Martin 1997

Methods

Country: USA
Randomization: method not stated

Participants

92 women, 113 men, problem drinkers, mean age 42, mean cpd 27, exercise < once a week.

Interventions

(a) Intervention 1: CV activity: various, group/individual, facility/home, 15-45 min, 60-75% HR max, (once/week for 4 weeks) + CP: (once/week for 12 weeks)

(b) Intervention 2: CP as (a) + nicotine gum.

(c) Control: Different CP (once/week for 8 weeks) and Nicotine Anonymous meetings (3 times/week for 4 weeks)

Exercise began on quit date

Outcomes

7-day PP abstinence
Validation: CO < 10ppm
Follow up: 7 days, 6, 12 months

Notes

Contact time not matched, different cessation programmes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>
Prapavessis 2007

Methods
- Country: NZ
- Randomization: Computer-generated

Participants
- 142 women, mean age 38, exercise < twice a week.
 (excludes 21 drop-outs)

Interventions
- (a) Intervention 1: CV activity: various, group/facility, 45 min, 60-75% HR reserve, (3 times/week for 12 weeks) + CP (three times/week for 12 weeks).
- (b) Intervention 2: exercise as (a) plus nicotine patches
- (c) Intervention 3: Cognitive behavioural cessation programme three times/week for 12 weeks.
- (d) Intervention 4: as (c) plus nicotine patches.
 Exercise began before quit date

Outcomes
- Continuous abstinence,
 Validation: saliva cotinine < 10ng/ml, CO < 10ppm.
 Follow up: 6 weeks, 3, 12 months

Notes
- Contact time balanced between a, b, c and d.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - adequate</td>
</tr>
</tbody>
</table>

Russell 1988

Methods
- Country: USA
- Randomization: method not stated

Participants
- 42 women, mean age 28, mean cpd 23.

Interventions
- (a) Intervention 1: Walk/jog: group/individual, facility/home, 20-30min, 70-80% HR max, (3 times/week for 9 weeks) + CP: (4 times/week for 1 week)
- (b) Intervention 2: CP as (a) + health education (once a week for 9 weeks)
- (c) Control: CP as (a)
 Exercise began after quit date

Outcomes
- quit (not defined)
 Validation: CO
 Follow up: 1, 4, 16 months

Notes
- No difference between groups
 Contact time balanced between (a) and (b)

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
</table>

Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Russell 1988 (Continued)

<table>
<thead>
<tr>
<th>Allocation concealment?</th>
<th>Unclear</th>
<th>B - Unclear</th>
</tr>
</thead>
</table>

Taylor 1988

| Methods | Country: USA
Randomization: method not stated |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>58 men, post-acute myocardial infarction</td>
</tr>
</tbody>
</table>
| Interventions | (a) Intervention 1: CV activity: various, group, facility, 30-40 min, 70-85% HR max, (i) [3, 23] (ii) [3, 8] + CP x 1 session;
(b) Intervention 2: (i, ii) as (a) home: 20 min, x 5/wk
(c) Control: Fitness test at end of treatment only
(d) Intervention 3: Fitness test at baseline & end of treatment, cessation programme as (a) |
| Outcomes | Validation: plasma thiocyanate
Follow up: 23 weeks |
| Notes | Contact time not balanced |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Ussher 2003

| Methods | Country: UK
Randomization: Computer-generated |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>188 women, 121 men, mean age: 43, mean cpd: 22; < 5 days of 30 mins moderate intensity exercise per week</td>
</tr>
</tbody>
</table>
| Interventions | (a) Intervention: Exercise counselling (once a week for 7 weeks) + CP (once a week for 7 weeks).
(b) Control: Cessation programme as (a) once/week for 7 weeks + brief health education once/week for 7 weeks.
Exercise began before quit date |
| Outcomes | Continuous abstinence,
Validation: CO < 10ppm.
Follow up: 6 weeks, 12 months |
| Notes | Contact time balanced between (a) and (b) |

Risk of bias
Allocation concealment?
<table>
<thead>
<tr>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

CO: carbon monoxide
CP: cessation programme
cpd: cigarettes per day
CV: cardiovascular
HR: heart rate
PP: point prevalence
ppm: parts per million

Characteristics of excluded studies
ordered by study ID

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caliani 2004</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise</td>
</tr>
<tr>
<td>Chaney 2008</td>
<td>Follow up was less than six months</td>
</tr>
<tr>
<td>Cinciripini 1996</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise</td>
</tr>
<tr>
<td>Clark 2005</td>
<td>A non-exercise control group was not included</td>
</tr>
<tr>
<td>Copeland 2006</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise</td>
</tr>
<tr>
<td>Daley 2004</td>
<td>Acute study</td>
</tr>
<tr>
<td>Daniel 2004</td>
<td>Acute study</td>
</tr>
<tr>
<td>Daniel 2006</td>
<td>Acute study</td>
</tr>
<tr>
<td>Daniel 2007</td>
<td>Acute study</td>
</tr>
<tr>
<td>Everson 2006</td>
<td>Acute study</td>
</tr>
<tr>
<td>Everson 2008a</td>
<td>Acute study</td>
</tr>
<tr>
<td>Fortmann 1995</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise</td>
</tr>
<tr>
<td>Grove 1993</td>
<td>The outcome was withdrawal symptoms rather than smoking abstinence</td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Grove 2006</td>
<td>Had sleep disturbance as the main outcome, rather than smoking abstinence</td>
</tr>
<tr>
<td>Hurt 1992</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
<tr>
<td>Hurt 1994</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
<tr>
<td>Janse van Rensburg 2007</td>
<td>Acute study</td>
</tr>
<tr>
<td>Janse van Rensburg 2008a</td>
<td>Acute study</td>
</tr>
<tr>
<td>Janse van Rensburg 2008b</td>
<td>Acute study</td>
</tr>
<tr>
<td>Jones 2001</td>
<td>Included an exercise programme in a self-help manual as part of a multiple component programme. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
<tr>
<td>Jonsdottir 2001</td>
<td>A quasi-experimental study comparing a smoking cessation programme plus weekly group exercise with the smoking cessation programme only. Participants were not randomly allocated to the groups.</td>
</tr>
<tr>
<td>Katomeri 2006a</td>
<td>Acute study</td>
</tr>
<tr>
<td>Katomeri 2006b</td>
<td>Acute study</td>
</tr>
<tr>
<td>McIver 2004</td>
<td>There was no control group</td>
</tr>
<tr>
<td>Mikhail 1983</td>
<td>Acute study</td>
</tr>
<tr>
<td>Oenema 2008</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
<tr>
<td>Ortega Sanchez-P 2006</td>
<td>Retrospective study</td>
</tr>
<tr>
<td>Pomerleau 1987</td>
<td>Acute study</td>
</tr>
<tr>
<td>Prochaska 2008</td>
<td>The follow up was less than six months</td>
</tr>
<tr>
<td>Ramsay 2004</td>
<td>Included an exercise programme as part of a multiple component smoking cessation programme. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
<tr>
<td>Reeser 1983</td>
<td>Acute study</td>
</tr>
<tr>
<td>Scerbo 2008</td>
<td>Acute study</td>
</tr>
<tr>
<td>Spring 2004</td>
<td>Combined an exercise programme with a dietary intervention. Therefore it was not possible to examine the specific effects of exercise.</td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Design Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor 2005</td>
<td>Acute study</td>
</tr>
<tr>
<td>Taylor 2006a</td>
<td>Acute study</td>
</tr>
<tr>
<td>Taylor 2006b</td>
<td>Acute study</td>
</tr>
<tr>
<td>Taylor 2007</td>
<td>Acute study</td>
</tr>
<tr>
<td>Thayer 1993</td>
<td>Acute study</td>
</tr>
<tr>
<td>Ussher 2001</td>
<td>Acute study</td>
</tr>
<tr>
<td>Ussher 2006</td>
<td>Acute study</td>
</tr>
<tr>
<td>Ussher 2008</td>
<td>Did not include a control group</td>
</tr>
<tr>
<td>Vickers 2005</td>
<td>The follow up was less than six months</td>
</tr>
<tr>
<td>Whiteley 2007</td>
<td>Did not include a control group</td>
</tr>
<tr>
<td>Zwick 2006</td>
<td>Unable to obtain details of study from authors</td>
</tr>
</tbody>
</table>
Characteristics of ongoing studies
ordered by study ID

Bock 2007

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Yoga for women attempting smoking cessation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>RCT</td>
</tr>
<tr>
<td>Participants</td>
<td>60 women</td>
</tr>
<tr>
<td>Interventions</td>
<td>8-week programme with 1-hour per week of cognitive-behavioural smoking cessation group treatment. Participants randomly assigned to receive either a supplemental wellness programme (contact-control) or 1 hour twice weekly of yoga.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>The primary outcome is 7-day point prevalence abstinence at 6 month follow up</td>
</tr>
<tr>
<td>Starting date</td>
<td>2007</td>
</tr>
<tr>
<td>Contact information</td>
<td>Professor Beth Bock, bbock@lifespan.org</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Ussher 2008b

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>A pragmatic randomized controlled trial of physical activity as an aid to smoking cessation during pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>RCT</td>
</tr>
<tr>
<td>Participants</td>
<td>866 pregnant women</td>
</tr>
<tr>
<td>Interventions</td>
<td>14 sessions of supervised exercise (treadmill walking) + 6 sessions of behavioural support versus 6 sessions of behavioural support alone</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Main outcome: smoking abstinence at end of pregnancy</td>
</tr>
<tr>
<td>Starting date</td>
<td>2008</td>
</tr>
<tr>
<td>Contact information</td>
<td>Dr Michael Ussher, mussher@sgul.ac.uk</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Studies in Progress
Comparison 1. Exercise component versus smoking cessation programme only

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Smoking cessation at longest follow up</td>
<td>12</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1 Exercise component versus smoking cessation programme only, Outcome 1 Smoking cessation at longest follow up.

Review: Exercise interventions for smoking cessation

Comparison: 1 Exercise component versus smoking cessation programme only

Outcome: 1 Smoking cessation at longest follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill 1985</td>
<td>7/18</td>
<td>5/18</td>
<td>1.40 [0.54, 3.60]</td>
</tr>
<tr>
<td>Taylor 1988</td>
<td>29/42</td>
<td>16/26</td>
<td>1.12 [0.78, 1.62]</td>
</tr>
<tr>
<td>Marcus 1991</td>
<td>2/10</td>
<td>0/10</td>
<td>5.00 [0.27, 92.62]</td>
</tr>
<tr>
<td>Hill 1993</td>
<td>5/18</td>
<td>7/22</td>
<td>0.87 [0.33, 2.29]</td>
</tr>
<tr>
<td>Marcus 1995</td>
<td>3/10</td>
<td>1/10</td>
<td>3.00 [0.37, 24.17]</td>
</tr>
<tr>
<td>Martin 1997</td>
<td>19/72</td>
<td>18/70</td>
<td>1.03 [0.59, 1.79]</td>
</tr>
<tr>
<td>Marcus 1999</td>
<td>16/134</td>
<td>8/147</td>
<td>2.19 [0.97, 4.96]</td>
</tr>
<tr>
<td>Usher 2003</td>
<td>19/154</td>
<td>19/145</td>
<td>0.94 [0.52, 1.71]</td>
</tr>
<tr>
<td>Marcus 2005</td>
<td>1/109</td>
<td>1/108</td>
<td>0.99 [0.06, 15.64]</td>
</tr>
<tr>
<td>Cornuz 2007</td>
<td>26/241</td>
<td>28/240</td>
<td>0.92 [0.56, 1.53]</td>
</tr>
<tr>
<td>Prapavessis 2007</td>
<td>12/68</td>
<td>8/53</td>
<td>1.17 [0.52, 2.65]</td>
</tr>
<tr>
<td>Kinnunen 2008</td>
<td>9/92</td>
<td>2/34</td>
<td>1.66 [0.38, 7.31]</td>
</tr>
</tbody>
</table>
WHAT'S NEW

Last assessed as up-to-date: 5 July 2008.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 July 2008</td>
<td>New search has been performed</td>
</tr>
<tr>
<td>21 July 2008</td>
<td>Two new studies included, several excluded studies added, background updated, table of acute studies added.</td>
</tr>
<tr>
<td>21 July 2008</td>
<td>New citation required but conclusions have not changed</td>
</tr>
<tr>
<td>1 July 2008</td>
<td>Change of authorship</td>
</tr>
<tr>
<td>1 July 2008</td>
<td>Amended</td>
</tr>
<tr>
<td>1 July 2008</td>
<td>Converted to new review format.</td>
</tr>
</tbody>
</table>

HISTORY

Review first published: Issue 3, 2000

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 May 2005</td>
<td>New search has been performed</td>
</tr>
<tr>
<td>19 May 2002</td>
<td>Three new studies, no change to conclusions.</td>
</tr>
<tr>
<td>19 May 2002</td>
<td>Search updated, no new studies.</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

The original review was conceived, extracted and written by Michael Ussher, Adrian Taylor, Robert West and Andrew McEwen.

The idea for the review was conceived by Ussher, Taylor and West. Ussher was responsible for co-ordinating the review and undertook the search process and data management; including screening search results and retrieved papers, abstracting data from the papers and contacting authors for additional information.

All authors made a contribution to the design, search strategy and interpretation of data. The writing of the original review was led by Ussher with assistance from West, Taylor and McEwen.

The 2005 update was conducted by Michael Ussher.

The 2008 review was updated to include a table of studies examining the acute effects of physical activity on cravings and withdrawal symptoms. This evidence was synthesised by Adrian Taylor and Guy Faulkner.

DECLARATIONS OF INTEREST

The first and second authors (MHU and AT) were involved in the conduct of one of the included studies (Ussher 2003).
SOURCES OF SUPPORT

Internal sources

- St George’s, University of London, UK.
- University of Exeter, UK.

External sources

- NHS Research & Development Programme, UK.
- Canadian Tobacco Control Research Initiative, Canada.

Guy Faulkner and Adrian Taylor were supported by a research grant funded through the strategic initiative Advancing the Science to Reduce Tobacco Abuse and Nicotine Addiction a partnership coordinated by the Canadian Tobacco Control Research Initiative (CTCRI). www.ctcri.ca

INDEX TERMS

Medical Subject Headings (MeSH)

*Exercise; Randomized Controlled Trials as Topic; Smoking [psychology]; Smoking Cessation [*methods]

MeSH check words

Humans